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Objective: The aim of this study was to develop and evaluate the per-
formance of artificial intelligence (AI) models that can identify safe and
dangerous zones of dissection, and anatomical landmarks during lapa-
roscopic cholecystectomy (LC).
Summary Background Data: Many adverse events during surgery occur
due to errors in visual perception and judgment leading to misinter-
pretation of anatomy. Deep learning, a subfield of AI, can potentially be
used to provide real-time guidance intraoperatively.
Methods: Deep learning models were developed and trained to identify
safe (Go) and dangerous (No-Go) zones of dissection, liver, gallbladder,
and hepatocystic triangle during LC. Annotations were performed by 4
high-volume surgeons. AI predictions were evaluated using 10-fold cross-
validation against annotations by expert surgeons. Primary outcomes
were intersection- over-union (IOU) and F1 score (validated spatial

correlation indices), and secondary outcomes were pixel-wise accuracy,
sensitivity, specificity, ± standard deviation.
Results: AI models were trained on 2627 random frames from 290 LC
videos, procured from 37 countries, 136 institutions, and 153 surgeons.
Mean IOU, F1 score, accuracy, sensitivity, and specificity for the AI to
identify Go zones were 0.53 (±0.24), 0.70 (±0.28), 0.94 (±0.05), 0.69
(±0.20). and 0.94 (±0.03), respectively. For No-Go zones, these metrics
were 0.71 (±0.29), 0.83 (±0.31), 0.95 (±0.06), 0.80 (±0.21), and 0.98
(±0.05), respectively. Mean IOU for identification of the liver, gall-
bladder, and hepatocystic triangle were: 0.86 (±0.12), 0.72 (±0.19), and
0.65 (±0.22), respectively.
Conclusions: AI can be used to identify anatomy within the surgical field.
This technology may eventually be used to provide real-time guidance
and minimize the risk of adverse events.
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volutional neural network, deep learning, deep neural network, go zone,
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O perative complications are often blamed on technical mishaps.
However, many adverse events tend to occur due to errors in

human visual perception leading to errors in judgment that sub-
sequently drive behaviors and actions that lead to adverse events.1-4

For example, during laparoscopic cholecystectomy (LC), misinter-
pretation of the biliary anatomy is often caused by significant
anatomic distortion from inflammation or aberrant anatomy, thus
leading to major bile duct injuries.4 Expert intraoperative perform-
ance that allows a surgeon to perform a safe dissection requires an
ongoing process of interpreting the surgical field and making critical
decision.5 Theories of surgical expertise and empirical evidence
suggest that expert surgeons have an ability to understand and
visualize “safe” and “dangerous” zones of dissection within hostile
territory and unknown anatomy.6 This mental model provides the
basis for exercising sound judgment and minimizing the risk of
inadvertent injuries. Consequently, one potential method to improve
performance during a procedure is by augmentation of the surgeon’s
mental model with real-time intraoperative guidance on the anat-
omy to improve quality and safety.

Artificial intelligence (AI), and its subfield Deep Learning,
is a branch of computer science that uses algorithms to
approximate human cognitive functions such as problem-solv-
ing, decision-making, object detection, and classification.7

Algorithms such as deep neural networks can be trained without
explicit programming using large quantities of data to learn to
predict an outcome on new data. These methodologies have beenDOI: 10.1097/SLA.0000000000004594
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applied towards the identification and classification of objects in
images and videos. The end-result is a new generation of com-
puter vision algorithms that are capable of identifying digital
patterns in pixelated data to achieve human-level object detec-
tion.8 Although deep learning has shown promising results for
various computer vision tasks in medicine (eg, cancer diagnosis
from radiology images, identification of polyps during colono-
scopy),9–12 its application and value for real-time surgical guid-
ance and decision-support are much more complex and has yet
to be demonstrated. Unlike images and videos from diagnostic
radiology, fundoscopy, or endoscopy, surgical videos have sig-
nificantly more variability in terms of background noise, image
quality, and objects within the field. Furthermore, surgical
planes and anatomical structures are almost never clearly
delineated, and are often hidden or partially visible under fatty
and fibrous tissues. This is a major obstacle for using computer
vision in the operating room to provide clinically meaningful
data. Using LC as an index procedure, the purpose of this study
was to train deep learning models to identify anatomical land-
marks as well as safe and dangerous zones of dissection, and to
assess their performance compared to expert annotations.

METHODS
Videos of LC were used to train deep neural networks to

accomplish 2 objectives: identify the safe zone of dissection (Go
zone) and the dangerous zone of dissection (No-Go zone), and
identify target anatomy, including the gallbladder, liver, and
hepatocystic triangle. The Go zone was defined as the area
located within the hepatocystic triangle (closer to the inferior
edge of the gallbladder) that is deemed safe to proceed with
dissection with a low probability of causing a major bile duct
injury. The No-Go zone was defined as the deeper region within
the hepatocystic triangle, where further dissection was deemed to
be unnecessary and dangerous with an unacceptable probability
of causing a major bile duct injury. The No-Go zone also
included the hepatoduodenal ligament, liver hilum, and all
structures inferiorly.

Dataset
LC videos were procured from several readily available

and preobtained datasets. These included a total of 308 anony-
mized videos from 37 countries (including all continents), 153
surgeons and 136 different institutions, with the top countries
being the United States, France, Canada, UK, and India
(Table 1). Videos were obtained between 2008 and 2019. Spe-
cifically, two of the datasets used in this study (Cholec8013 and
M2CAI16-workflow Challenge13,14 datasets) included 117 open-
source videos derived from a single institution (Institute of
Image-Guided Surgery, Strasbourg, France). All duplicate vid-
eos were removed. Eligibility criteria included laparoscopic
recordings where a cholecystectomy was performed (ie, subtotal
cholecystectomy was excluded), and where the cholecystectomy
was not performed using a top-down approach. Given the
anonymity of the videos, demographic and other personal
identifying information was not attached to this dataset. Ten
randomly-selected frames were extracted from each video from
the moment the gallbladder was grasped to begin dissection of
the hepatocystic triangle until just before clipping of the cystic
structures, using ffmpeg 4.1 software (www.ffmpeg.org). Frames
wherein the camera was outside the operating field were
excluded. Frames were reformatted to an aspect ratio of 16:9.

Annotations
Three acute care and minimally invasive surgeons (A.M.,

M.A., P.P.) made free-hand annotations on all extracted frames to
describe the location of the Go zone, No-Go zone, liver, gall-
bladder, and hepatocystic triangle within each frame. All anno-
tations were reviewed for accuracy by a fourth high-volume
hepatobiliary surgeon (A.A.). All 4 annotators are members of the
Society of American Gastrointestinal and Endoscopic Surgeons’
Safe Cholecystectomy Task Force and underwent an annotation
training protocol, which included a discussion and agreement on
the definition of each structure as well as a 1-hour practice session
for using the annotation software. Annotations were done using
Think Like A Surgeon software (https://thinklikeasurgeon.ca).15,16

While watching the source video for context, annotations are
made on the still frames and selected pixels are submitted and
mapped on the back-end of the platform. Details of the annota-
tion process are provided in the Supplemental Digital Content
(Appendix 1, http://links.lww.com/SLA/C727). This software was
initially developed to objectively assess experts’ conceptualization
of anatomical structures in the surgical field, with evidence for
validity as an accurate reflection of their mental model.17,18 To
help eliminate annotation errors and interannotator variability,
only pixels that were annotated by all surgeons were used as both
input for training the network and as the ground truth (ie,
standard criterion).

Development of the Model
The models used in this study were designed to perform

semantic segmentation, which is a form of computer vision task
whereby an object is identified and highlighted along its exact
boundaries pixel-by-pixel as an overlay on the original video
(Fig. 1). Details of the model are provided in the Supplemental
Digital Content (Appendix 2, http://links.lww.com/SLA/C728).
Three models were developed. The first 2 models separately
identify the location of the Go zone and No-Go zone in each
frame, where each pixel was classified as either the presence or
absence of each zone. These models will be collectively referred
to as GoNoGoNet. The third model simultaneously mapped the
location of the anatomical structures in each frame, where each
pixel was classified as either gallbladder, liver, hepatocystic tri-
angle, or none of the above. This model will be referred to as
CholeNet. All training and validation of GoNoGoNet and
CholeNet was done using an Nvidia 1080Ti graphics processing
unit (GPU).

TABLE 1. Total Number of Institutions, Surgeons, and Videos
Procured From Each Continent in the Entire Dataset

Continent* Institutions Surgeons Videos

North America 21 (15%) 25 (16%) 43 (15%)
Central and South America 18 (13%) 18 (12%) 18 (6%)
Europe 33 (24%) 45 (29%) 149 (51%)
Middle East and Africa 22 (16%) 22 (14%) 22 (8%)
Central Asia 36 (26%) 36 (24%) 36 (12%)
East Asia and Pacific 6 (4%) 7 (5%) 7 (2%)
Unknown — — 15 (5%)
Total 136 153 290

Data are displayed as n (%).
*Countries include: Argentina, Australia, Bangladesh, Belgium, Brazil, Bul-

garia, Canada, Chile, Columbia, Ecuador, Egypt, El Salvador, France, Georgia,
Germany, Greece, India, Indonesia, Italy, Japan, Malaysia, Mexico, Mongolia,
Morocco, Nepal, Netherlands, Pakistan, Palestine, Romania, South Africa, Spain,
Switzerland, Tunisia, Turkey, United Arab Emirates, United Kingdom, United
States.
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Evaluation of Model Performance
A 10-fold cross-validation technique was used to evaluate

the performance of GoNoGoNet and CholeNet. The entire
dataset of videos was randomly split into 10 partitions, whereby
9 partitions made up the development set and the 10th partition
was the validation set. This development-validation sequence
was executed 10 times to evaluate the models’ performance
based on the average of all 10 tests. The data were split randomly
to include videos from all institutions into the various partitions
on a per-case level rather than at a perframe level to ensure that
frames from a particular video in the development set did not
appear in the validation set.19

The primary outcomes were Intersection-Over-Union
(IOU) and Dice/F1 spatial correlation index, which are com-
monly used metrics in computer vision to measure the overlap
between the actual object location area (in this case, concordance
of expert annotations, also known as the ground truth) and the
AI’s predicted area of a segmented object.20,21 Secondary out-
comes included the ability to correctly or incorrectly classify
each pixel within an image with respect to the reference standard
(ground truth), including mean accuracy, sensitivity, specificity,
negative predicted value, and positive predicted value for every
frame in the validation set. Since a 10fold cross-validation
methodology was used, these metrics were averaged for all 10
sequences. Model outputs are displayed as overlay segmenta-
tions of the target structure. For GoNoGoNet, model outputs
are demonstrated as both binary format (eg, each pixel that is
predicted to be a Go zone is highlighted and each pixel that is
predicted not to be a Go zone is not highlighted), and as a
topographical heat map where each pixel is denoted as a prob-
ability of being part of a zone. Examples of these formats are
shown in Figure 2.

Subsampling Experiments
Additional experiments were conducted to determine

whether the results are reproducible both within an institution
and between institutions. First, the models were trained and
tested using data within the same institution after removal of all
duplicate videos (development set: Cholec80 dataset; validation
set: M2CAI16-work- flow Challenge dataset). Subsequently, to
determine whether a model can be trained on a large dataset and
subsequently applied to an outside institution, training
was performed using videos from all institutions outside the
Institute of Image-Guided Surgery (Strasbourg, France) and
validation was performed using videos from the Cholec80 and
M2CAI16-workflow Challenge datasets.

RESULTS
Of 308 available videos, 290 met the inclusion criteria.

Resolution ranged between 854 × 480 pixels (480p) and 1920 ×
1080 pixels (1080p) with an aspect ratio of either 16:9 or 4:3. A
total of 2900 frames were extracted, 273 of which were excluded
from the analysis and a total of 2627 frames were used for
training and testing the AI models. From the included videos,
127 (44%) showed signs of acute or chronic cholecystitis, 63
(22%) required lysis of adhesions to reach the infundibulum of

FIGURE 1. A Pyramid Scene Parsing Network (PSPNet) was used for pixel-wise semantic segmentation.28 The architecture consists of
a deep convolutional neural network (CNN; ResNet50) followed by a multiscale pyramid pooling module, which aggregates the feature maps from
the CNN at 4 different scales (1 × 1, 2 × 2, 3 × 3, and 6 × 6) using the extracted frames. Details of the model are described in the Supplemental
Digital Content (Appendix 2, http://links.lww.com/SLA/C728).

FIGURE 2. Model outputs are displayed as overlay segmen-
tations of the target anatomical structure(s). For GoNoGoNet,
model outputs are demonstrated as both binary format and
topographical heat map. In the binary format example (A),
each pixel is predicted to be either part of the Go zone
(highlighted) or not part of the Go zone (not highlighted). In
the probability heat map example (B), each pixel is denoted as
a probability of being part of the Go zone (red region: highest
probability; blue region: lowest probability).
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the gallbladder, 71 (24%) encountered major or minor bleeding,
6 (2%) encountered bile leak, and 3 (1%) encountered other
events. A total of 13,135 annotation files were generated for
GoNoGoNet and CholeNet. Annotation concordance between
annotators for each target structure is summarized in Table 2.

Performance metrics for all models are shown in Table 3.
For the entire dataset, mean IOU and F1 scores were > 0.5 and
> 0.7 respectively showing good spatial overlap compared to
ground truths. Accuracy for pixel-wise identification was con-
sistently greater than 90% for all structures. Examples of model
outputs for GoNoGoNet and CholeNet are shown in Figures 3
and 4, respectively. Inference time for all models was < 0.01 sec-
onds, satisfying real-time requirements. Examples of active seg-
mentation during videos of LC are shown in the Supplemental
Digital Content [Video 1 (Active segmentation of Go and No-Go
zones during a LC. Model outputs are derived from GoNoGoNet.
Green overlay: Go zone; Red overlay: No-Go zone.), http://links.
lww.com/SLA/C721; Video 2 (Active segmentation of Go zone
during a LC. Model outputs are derived from GoNoGoNet with
segmentation as a probability heat map. Each pixel is denoted as a
probability of being part of the Go zone (red region: highest
probability; blue region: lowest probability), http://links.lww.com/
SLA/C723; Video 3 (Active segmentation of No-Go zone during a
LC. Model outputs are derived from GoNoGoNet with segmen-
tation as a probability heat map. Each pixel is denoted as a
probability of being part of the Go zone (red region: highest

probability; blue region: lowest probability), http://links. lww.com/
SLA/C725]. Performance metrics for GoNoGoNet and CholeNet
were also segregated according to the presence of cholecystitis,
need for lysis of adhesions, and the presence of bleeding or bile
leak. These are summarized in the Supplemental Digital Content
(eTable 1, http://links.lww.com/SLA/C726).

For the subset analyses, No-Go zone identification
maintained a mean F1 score greater than 0.80, mean IOU of
0.68, and mean accuracy > 94% for pixel-wise identification. For
Go zone identification, mean F1 score and IOU decreased to
0.63 and 0.46, respectively, whereas accuracy remained > 90%.

DISCUSSION
AI is a general-purpose technology which has begun to

permeate all facets of society, and although early success of deep
learning has been highly encouraging in many clinical environ-
ments, its value in a surgical theater has been limited thus far.
Given that most adverse events among surgical patients
have root causes that can be traced back to intraoperative
events,1–3,22,23 there is an opportunity to utilize innovations in
machine learning to design quality-improvement tools that
directly address these unmet needs. In this study, we explored the
use of deep learning in computer vision to identify complex and
poorly defined anatomy within the surgical field. Specifically,
deep learning models were developed and shown to perform
semantic segmentation functions for the identification of safe
and dangerous zones of dissection and other anatomical struc-
tures during LC with a high level of performance.

Given the importance of pattern recognition and creating
an accurate mental model that reflects true surgical anatomy
throughout an operation, we sought to utilize computer vision
to segment the surgical field and to display these data as an
overlay on the surgical field. This novel application of deep
learning is a significant step given the many limitations and
complexities of using surgical data, including frequent camera
motions, variations in surgical anatomy, tissues characteristics,
instruments, lighting, camera angle and surgical approach,
presence of artefacts such as smoke and fluids, limited videos to
use for training, and difficulty recruiting content experts

TABLE 2. Annotation Concordance Among Annotators

Target Structure Concordance*

Go Zone 0.89 (0.08)
No-Go Zone 0.91 (0.07)
Liver 0.96 (0.05)
Gallbladder 0.98 (0.04)
Hepatocystic triangle 0.86 (0.07)

Data are displayed as the mean value (Standard Deviation).
*Concordance was calculated using a validated visual concordance test

methodology14–17 as the average per-pixel agreement amongst annotators for each
frame. The proportion of pixels that have 100% agreement by annotators is cal-
culated for every frame, and the mean value is calculated for each specific target
structure.

TABLE 3. Summary of Performance Metrics for GoNoGoNet and CholeNet

Target Structure F1/Dice Score IOU Accuracy Sensitivity Specificity NPV PPV

Development set: complete dataset
Validation set: complete dataset

Go Zone 0.70 (0.28) 0.53 (0.24) 0.94 (0.05) 0.69 (0.20) 0.94 (0.03) 0.96 (0.05) 0.74 (0.28)
No-Go Zone 0.83 (0.31) 0.71 (0.29) 0.95 (0.06) 0.80 (0.21) 0.98 (0.05) 0.97 (0.05) 0.86 (0.30)
Liver 0.92 (0.10) 0.86 (0.12) 0.95 (0.04) 0.93 (0.10) 0.96 (0.04) 0.96 (0.04) 0.92 (0.11)
Gallbladder 0.84 (0.14) 0.72 (0.19) 0.95 (0.04) 0.83 (0.15) 0.97 (0.03) 0.97 (0.02) 0.84 (0.14)

Hepatocystic triangle 0.79 (0.18) 0.65 (0.22) 0.93 (0.05) 0.80 (0.17) 0.95 (0.04) 0.96 (0.03) 0.78 (0.19)
Development set: Institute of Image-Guided Surgery (Strasbourg, France)*
Validation set: Institute of Image-Guided Surgery (Strasbourg, France)*

Go Zone 0.63 (0.26) 0.46 (0.21) 0.94 (0.06) 0.59 (0.25) 0.97 (0.02) 0.96 (0.07) 0.67 (0.28)
No-Go Zone 0.80 (0.23) 0.68 (0.24) 0.94 (0.05) 0.74 (0.26) 0.98 (0.02) 0.95 (0.06) 0.89 (0.21)

Development set: all institutions except the Institute of Image-Guided Surgery (Strasbourg, France)*
Validation set: Institute of Image-Guided Surgery (Strasbourg, France)*

Go Zone 0.63 (0.30) 0.46 (0.24) 0.94 (0.04) 0.61 (0.32) 0.97 (0.04) 0.96 (0.03) 0.64 (0.29)
No-Go Zone 0.81 (0.29) 0.68 (0.28) 0.95 (0.05) 0.79 (0.30) 0.98 (0.02) 0.97 (0.05) 0.83 (0.03)

IOU, F1/Dice Spatial Correlation Index, Accuracy, Sensitivity, Specificity, NPV, and PPV are reported as the mean value (Standard Deviation) for every frame.
Experimental results are shown for: the entire dataset using 10-fold cross-validation (ie, 10 repetitions of random 90/10 development-validation set split), the training and
validation performed using the same institutional data, and validation performed on a single institution’s data after training on the data from every other institutions.

NPV indicates negative predictive value; IOU, intersection-over-union; PPV, positive predictive value.
*Data from the Institute of Image-Guided Surgery (Strasbourg, France) was acquired from open-source videos from the Cholec80 and M2CAI16-workflow Challenge datasets.
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(surgeons) to annotate data for supervised machine learning.
More importantly, identifying ill-defined anatomical structures
that are covered with fatty and fibrous tissue and that have no
clear border (eg, Go and No-Go zones) is a task that has more
inherent obstacles for machine learning compared to structures
on radiographic images or endoscopy, where borders are more
delineated and the data have more consistency. This is a
problem that is compounded by the fact that experts have
significant variations in their annotations, which makes it dif-
ficult to establish a consensus reference standard. Furthermore,
the common use of bounding boxes (rectangular box) for object
localization and tracking in AI applications have a limited role
in the surgical field where structures have more complex geo-
metric configurations and blend with their background. For
these tasks, semantic segmentation provides more valuable
information.

Despite these challenges, GoNoGoNet and CholeNet
showed high degrees of spatial correlation, as well as high accu-
racy between ground truth annotations and annotations predicted
by the models. More importantly, when these predictions are

coalesced to run throughout videos of LC, the deep learning
models produced a consistent yet dynamic overlay regardless of
the angle and perspective (Video 1, http://links.lww.com/SLA/
C721; Video 2, http://links.lww.com/SLA/C723; Video 3, http://
links.lww.com/SLA/C725). Such an overlay could provide aug-
mented reality feedback to surgeons. Another important finding is
the use of probability heat maps to represent uncertainty in the
exact boundary of zones. These maps tend to fit more consistently
with surgeons’ mental models by representing Go and No-Go
zones as probabilistic predictions of a generalized region that is
safe or dangerous, as opposed to exact boundaries of a binary
output, which are less realistic. As our previous qualitative studies
have shown,6 expert surgeon mental models are almost never
binary. Instead, there will be indeterminate regions and even in the
most routine cholecystectomies, there will seldom be an exact
boundary between safe and dangerous zones of dissection. Most
surgeons think in terms of probabilistic predictions and this study
attempted to replicate this by using heat maps. In fact, as Figure 2
suggests, when Go and No-Go zones are simultaneously shown,
there is a buffer zone (ie, an unlabeled area) between the 2, which

FIGURE 3. Model predictions for GoNoGoNet. Three separate examples of model predictions for GoNoGoNet compared to
original frames are shown, displayed as overlays of Go zone (green overlay) and No-go zone (red overlay), and probability heat
maps for Go and No-Go zones.
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further supports GoNoGoNet’s ability to approximate how expert
surgeons perceive safe and unsafe areas of dissection.

Due to the very short inference time necessary for real-
time predictions, this form of augmented reality has tremendous
potential for quality-improvement. By providing real-time dis-
play of where to dissect and where not to dissect, this technology
could potentially be incorporated in the future as part of inte-
grated endoscopic platforms for real-time decision-support. This
concept is analogous to current motor-vehicle navigation sys-
tems that are guided by computer vision and Global Positioning
System (GPS) data to provide guidance on the optimal tra-
jectory. However, additional trials will need to be conducted to
demonstrate its generalizability, safety and effectiveness for
deployment in real-time to improve surgical performance. Var-
ious design issues also need to be considered, including which
data to provide (eg, Go zone, No-Go zone, or both), how to
provide it, and when to provide it during a case. This will require
additional survey and qualitative studies amongst end-users to
evaluate the clinical and educational value of such a system and
to make sure it is assimilated into the operative environment for
optimal effectiveness. Similar to the evolution of automated
vehicles, these data could eventually be incorporated into
advanced robotic surgery platforms that increasingly aim to
automate surgical tasks. Another important application of these
results is in surgical education, performance assessment, and the
emerging field of automated coaching.24,25 Theories of pro-
fessional expertise suggest that skill development in any task is
developed through focused and deliberate practice of specific
competencies – a principle that is universal for many professions,
including surgery.26 This requires specific, measurable and
reproducible metrics for assessment and immediate feedback
with ample opportunities for repetition. The data output from
these models can be potentially used on-demand to assess
intraoperative decision-making either as feedback on perform-
ance or deliberate practice of cognitive behaviors (such as
accurate identification of safe and danger zones).

Although these preliminary results show promise, there are
many limitations to consider, and its translation into the operating

room as a routine surgical tool requires considerably more validity
evidence. Although videos were obtained from a large range of
sources and recording platforms, the models’ performance on
videos from a single institution diminished slightly when the
development set did not include any videos from that institution.
This suggests that larger datasets from a wide breadth of sources
are required to develop a more robust model whose output is
generalizable, has less inherent bias, and avoids other problems
such as overfitting. Additional instances are crucial as one of the
biggest limitations to AI is that the model can only make infer-
ences and predictions based on the dataset that was used for
training. In other words, pathology or anatomical configurations
that were outside the scope of training may have lower perform-
ance on this model. It is also important to note that, although the
aim of these models was to identify the Go zone, No-Go zone,
hepatocystic triangle, gallbladder and liver, the models were not
trained to identify variant biliary anatomy whose presence
increases the risk of inadvertent major bile duct injury. Future
iterations of these models will aim to detect and flag these aber-
rant anatomical variants as well as other intraoperative factors
that may create a high-risk scenario (eg, significant inflammation,
short cystic duct, suboptimal retraction and exposure of the
hepatocystic triangle). In this study, data were obtained from
many countries, patients with different ethnicities, videos with
different qualities, and surgeons with different techniques and
instruments. Half of the data also included patients with either
acute or chronic inflammatory changes as opposed to only routine
non-inflamed cases with very similar anatomy. Recently, there has
been increasing momentum by several groups to create a central
repository of surgical videos that can be used to coalesce many
datasets and overcome these limitations.27

As the field of computer vision progresses at an expo-
nential rate, newer and more advanced algorithms for semantic
segmentation are becoming increasingly available to yield higher
performance and better prediction abilities. Furthermore, most
of the videos used in this study only utilized a random sample of
ten frames, which represents a very small proportion of the total
number of frames from each video. Although it is not feasible for

FIGURE 4. Model predictions for CholeNet. Three separate examples of model predictions for CholeNet compared to original
frames are shown, displayed as simultaneous overlays of the liver (green overlay), gallbladder (red overlay), and hepatocystic
triangle (purple overlay).
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a group of expert annotators to annotate every single frame for
every video, it is possible to use semisupervised or unsupervised
machine learning methodologies to automatically annotate
many frames with subsequent review by a trained human
annotator, increasing the amount of data that could be utilized
for training. Finally, with the advent of Generative Adversarial
Networks (ie, deep fakes), it is now possible to develop synthetic
datasets which can potentially act as additional datasets to train
deep neural networks.

Another major challenge is how to interpret metrics of
performance. Although IOU and F1 score can objectively
assess spatial overlap on a global level, it does not place weight
on more important regions of interest. For instance, the value
of the No-Go zone is in suggesting where not to dissect in the
deeper regions of the hepatocystic triangle. However, its per-
formance was also evaluated based on its ability to predict
other less relevant regions in the No-Go zone (eg, porta hep-
atis, duodenum), where visual misinterpretation of biliary
anatomy would be very unlikely. It is also interesting to note
that sensitivity was consistently lower than specificity in this
study. Whereas specificity and positive predictive value are
more important for Go zones (ie, AI makes the suggestion to
dissect in an area that has a high likelihood of being safe),
sensitivity and negative predictive value are more applicable
for No-Go zones, where a user can develop a sense of security
to dissect in areas not identified as “dangerous”. As the field
expands and better metrics are developed for computer vision
segmentation tasks and other applications (eg, automated
robotic surgery), additional studies will be necessary to dem-
onstrate its value and impact on patient care.

CONCLUSIONS
This study suggests that deep learning can be used to

identify safe and dangerous zones of dissection and other ana-
tomical structures in the surgical field during LC with a high
degree of performance. As additional evidence emerges on the
safety and effectiveness of using AI in the operating room, these
automated computer vision tasks have the potential to augment
performance and eventually be used for real-time decision-sup-
port and other qualityimprovement initiatives in the future.
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