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Introduction

The world is changing. There are more phones than people in the world, 

and it is increasingly connected. People use virtual assistants, self-driving 

cars, find partners through digital apps, and search the Web for any 

symptom of ill health. Each digital event leaves a digital exhaust that is 

datafying life as we know it. The success of many of the world’s most loved 

services, from Google to Uber, Alexa to Netflix, is grounded in big data and 

optimization.

Although medicine has been receptive to the benefits of big data and 

AI, it has been slow to adopt the rapidly evolving technology, particularly 

when compared to sectors such as finance, entertainment, and transport: 

that is, until now.

Recent digital disruption has catalyzed healthcare's adoption of 

big data and AI. Data of all sorts, shapes, and sizes are used to train AI 

technologies that facilitate machines to learn, adapt, and improve on their 

learning. Academic institutions and start-ups alike are developing rapid 

prototype technologies with increasingly robust health and engagement 

claims. The blending of technology and medicine has been expedited 

by smartphones and the Internet of Things, which is facilitating a wealth 

of innovation that continues to improve lives. With the arrival of health 

technology, people can monitor their health without the assistance of a 

healthcare professional; healthcare is now mobile and no longer in the 

waiting room.

At the same time, the world’s population is living longer, and 

unhealthier, than ever: and in a financial crisis. Healthcare services are 

turning to value-based and incentivized care as non-communicable 

diseases such as type 2 diabetes and obesity become global pandemics.
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Data is proving an invaluable tool in improving health; information 

is empowering. Data science, the science of big data, its analysis, and 

intelligent programming layers has now become a pillar to achieve traction 

and success in healthcare. Digital health can democratize and personalize 

healthcare—and data is the golden key. This comes at the same time as a 

growing appetite to measure and quantify more aspects of human life.

Data insight and real-world evidence are facilitating rapid 

technology innovation that regulators are struggling to keep up with. The 

consequences of digital health democratization have not only a health 

impact but also ethical implications. Big data and machine learning enable 

stakeholders to uncover hidden connections and patterns, including 

predictions of the future. The effects of understanding this data have moral 

and legal consequences that require appropriate governance to mitigate 

risk and harm.

Healthcare providers, individuals, and organizations all house a 

fountain of data that can be used for machine learning. Many people have 

a fair idea of what they would like to learn from data but are unaware 

as to how much data is required and what can be achieved before more 

technical aspects of uncovering hidden patterns, trends, and biases are 

found.

This book takes a practical, hands-on approach to big data, AI, and 

machine learning and the ethical implications of such tools. We cover 

the theory and practical applications of AI in healthcare—from where 

and how to start to applying machine learning techniques and evaluating 

performance. The book concludes with a series of case studies from 

leading health organizations who utilize AI and big data in novel and 

innovative ways.

InTroduCTIonInTroduCTIon
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CHAPTER 1

What Is Artificial 
Intelligence?

“Knowledge on its own is nothing, but the application of  
useful knowledge? That's powerful.”

—Osho

Artificial intelligence (AI) is considered, once again, to be one of the most 

exciting advances of our time. Virtual assistants can determine our music 

tastes with remarkable accuracy, cars are now able to drive themselves, 

and mobile apps can reverse diseases once considered to be chronic and 

progressive.

Many people are surprised to learn that AI is nothing new.  

AI technologies have existed for decades. It is, in fact, going through a 

resurgence—and it is being driven by availability of data and cheaper 

computing.

 A Multifaceted Discipline
AI is a subset of computer science that has origins in mathematics, logic, 

philosophy, psychology, cognitive science, and biology, among others 

(Figure 1-1).
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The earliest research into AI was inspired by a constellation of thought 

that began in the late 1930s and culminated in 1950 when British pioneer 

Alan Turing published Computing Machinery and Intelligence in which he 

asked, can machines think? The Turing Test proposed a test of a machine's 

ability to demonstrate “artificial” intelligence, evaluating whether the 

behavior of a machine is indistinguishable from that of a human. Turing 

proposed that a computer could be considered to be able to think if a 

human evaluator could have a natural language conversation with both a 

computer and a human and not distinguish between either (i.e., an agent 

or system that is successfully mimicking human behavior).

The term AI was first coined in 1956 by Professor John McCarthy of 

Dartmouth College. Professor McCarthy proposed a summer research 

project based on the idea that “every aspect of learning or any other feature 

of intelligence can in principle be so precisely described that a machine can 

be made to simulate it”.[1]

The truth is that AI, at its core, is merely programming. As depicted in 

Figure 1-1, AI can be understood as an abstraction of computer science. 

The surge in its popularity, and so too its ability, has much to do with the 

Figure 1-1. AI, machine learning, and their place in computer 
science

Chapter 1  What Is artIfICIal IntellIgenCe?
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explosion of data through mobile devices, smartwatches, wearables, and 

the ability to access computer power cheaper than ever before. It was 

estimated by IBM in 2011 that 90% of global data had been created in the 

preceding 2 years.[2]

It is estimated that there will be 150 billion networked measuring 

sensors in the next decade—which is 20 times the global population. This 

exponential data generated is enabling everything to become smart. From 

smartphones to smart washing cars, smart homes, cities, and communities 

await.

With this data comes a plethora of learning opportunities and 

hence, the focus has now shifted to learning from available data and the 

development of intelligent systems. The more data a system is given, the 

more it is capable of learning, which allows it to become more accurate.

The use and application of AI and machine learning in enterprise are 

still relatively new, and even more so in health. The Gartner “Hype Cycle 

for Emerging Technologies” in 2017 placed machine learning in the peak 

of inflated expectations, with 5 to 10 years before plateau.

As a result, the applications of machine learning within the healthcare 

setting are fresh, exciting, and innovative. With more mobile devices than 

people today, the future of health is wrought with data from the patient, 

environment, and physician. As a result, the opportunity for optimizing 

health with AI and machine learning is ripening.

The realization of AI and machine learning in health could not be 

more welcome in the current ecosystem, as healthcare costs are increasing 

globally, and governmental and private bill payers are placing increasing 

pressures on services to become more cost-effective. Costs must typically 

be managed without negatively impacting patient access, patient care, and 

health outcomes.

But how can AI and machine learning be applied in an everyday 

healthcare setting? This book is intended for those who seek to understand 

what AI and machine learning are and how intelligent systems can be 

Chapter 1  What Is artIfICIal IntellIgenCe?
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developed, evaluated, and deployed within their health ecosystem. Real-

life case studies in health intelligence are included, with examples of how 

AI and machine learning is improving patient health, population health, 

and facilitating significant cost savings and efficiencies.

By the end of the book, readers should be confident in explaining key 

aspects of AI and machine learning to stakeholders. Readers will be able 

to describe the machine learning approach and limitations, fundamental 

algorithms, the usefulness and requirements of data, the ethics and 

governance of learning, and how to evaluate the success of such systems.

Rather than focus on overwhelming statistics and algebra, theory 

and practical applications of AI and machine learning in healthcare 

are explored—with methods and tips on how to evaluate the efficacy, 

suitability, and success of AI and machine learning applications.

 Examining Artificial Intelligence
At its heart, AI can be defined as the simulation of intelligent behavior in 

agents (computers) in a manner that we, as humans, would consider to be 

smart or human-like. The core concepts of AI include agents developing 

traits including knowledge, reasoning, problem-solving, perception, 

learning, planning, and the ability to manipulate and move.

In particular, AI could be considered to comprise the following:

• Getting a system to reason rationally. Techniques 

include automated reasoning, proof planning, 

constraint solving, and case-based reasoning.

• Getting a program to learn, discover and predict. 

Techniques include machine learning, data mining 

(search), and scientific knowledge discovery.

Chapter 1  What Is artIfICIal IntellIgenCe?
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• Getting a program to play games. Techniques include 

minimax search and alpha-beta pruning.

• Getting a program to communicate with humans. 

Techniques include natural language processing (NLP).

• Getting a program to exhibit signs of life. Techniques 

include genetic algorithms.

• Enabling machines to navigate intelligently in the world

• This involves robotic techniques such as planning and 

vision.

There are many misconceptions of AI, primarily as it’s still quite a 

young discipline. Indeed, there are also many views as to how it will 

develop. Interesting expert opinions include those of Kevin Warwick, who 

is of the opinion robots will take over the earth. Roger Penrose reasons 

that computers can never truly be intelligent. Meanwhile, Mark Jeffery 

goes as far as to suggest that computers will evolve to be human. Whether 

AI will take over the earth in the next generation is unlikely, but AI and its 

applications are here to stay.

In the past, the intelligence aspect of AI has been stunted due to 

limited datasets, representative samples of data, and the inability to both 

store and subsequently index and analyze considerable volumes of data. 

Today, data comes in real time, fuelled by exponential growth in mobile 

phone usage, digital devices, increasingly digitized systems, wearables, 

and the Internet of Things (IoT).

Not only is data now streaming in real time, but it also comes in at a rapid 

pace, from a variety of sources, and with the demand that it must be available 

for analysis, and fundamentally interpretable, to make better decisions.

There are four distinctive categories of AI.

Chapter 1  What Is artIfICIal IntellIgenCe?
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 Reactive Machines
This is the most basic AI. Reactive systems respond in a current scenario, 

relying on taught or recalled data to make decisions in their current state. 

Reactive machines perform the tasks they are designed for well, but they 

can do nothing else. This is because these systems are not able to use 

past experiences to affect future decisions. This does not mean reactive 

machines are useless. Deep Blue, the chess-playing IBM supercomputer, 

was a reactive machine, able to make predictions based on the chess board 

at that point in time. Deep Blue beat world champion chess player Garry 

Kasparov in 1996. A little-known fact is that Kasparov won three of the 

remaining five games and defeated Deep Blue by four games to two.

 Limited Memory—Systems That Think and Act 
Rationally
AI that works off the principle of limited memory and uses both pre-

programmed knowledge and subsequent observations carried out 

over time. During observations, the system looks at items within its 

environment and detects how they change, then makes necessary 

adjustments. This technology is used in autonomous cars. Ubiquitous 

Internet access and IoT is providing an infinite source of knowledge for 

limited memory systems.

 Theory of Mind—Systems That Think 
Like Humans
Theory of mind AI represents systems that interpret their worlds and the 

actors, or people, in them. This kind of AI requires an understanding that the 

people and things within an environment can also alter their feelings and 

behaviors. Although such AI is presently limited, it could be used in caregiving 

roles such as assisting elderly or disabled people with everyday tasks.

Chapter 1  What Is artIfICIal IntellIgenCe?
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As such, a robot that is working with a theory of mind AI would be 

able to gauge things within their worlds and recognize that the people 

within the environments have their own minds, unique emotions, learned 

experiences, and so on. Theory of mind AI can attempt to understand 

people’s intentions and predict how they may behave.

 Self-Aware AI—Systems That Are Humans
This most advanced type of AI involves machines that have consciousness 

and recognize the world beyond humans. This AI does not exist yet, 

but software has been demonstrated with desires for certain things and 

recognition of its own internal feelings. For instance, in 2015, researchers 

at the Rensselaer Polytechnic Institute gave an updated version of the wise 

men puzzle, an induction self-awareness test, to three robots—and one 

passed. The test requires AI to listen and understand unstructured text as 

well as being able to recognize its own voice and its distinction from other 

robots.

Technology is now agile enough to access huge datasets in real time, 

and learn on the go. Ultimately, AI is only as good as the data that’s used 

to create it—and with robust, high-volume data, we can be more confident 

about our decisions.

Healthcare has been slow to adopt the benefits of big data and AI, 

especially when compared to transport, energy, and finance. Although 

there are many reasons for this, the rigidity of the medical health sector 

has been duly grounded in the fact that peoples’ lives are at risk. Medical 

services are more of a necessity than a consumer choice; so historically, 

the medical industry has had little to no threat that usually drives other 

industries to seek innovation.

That has expedited a gap in what healthcare institutes can provide and 

what patients want—which subsequently has led to variances in care, in 

health outcomes, and a globally recognized medication-first approach to 

disease.

Chapter 1  What Is artIfICIal IntellIgenCe?
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The explosion of data has propelled AI through enabling a data-led 

approach to intelligence. The last 5 years has been particularly disruptive 

in healthcare, with applications of data-led AI helping intelligent systems 

not only to predict, diagnose, and manage disease but to actively reverse 

and prevent it—and the realization of digital therapeutics.

Recent advances in image recognition and classification are beginning 

to filter into industry too, with deep neural networks achieving remarkable 

success in visual recognition tasks, often matching or exceeding human 

performance (Figure 1-2).

Figure 1-2. AI and its development

 What Is Machine Learning?
Machine learning is a term credited to Arthur Samuel of IBM, who in 1959 

proposed that it may be possible to teach computers to learn everything 

they need to know about the world and how to carry out tasks for 

themselves. Machine learning can be understood as an application of AI.

Machine learning was born from pattern recognition and the theory 

that computers can learn without being programmed to perform specific 

tasks. This includes techniques such as Bayesian methods; neural 

Chapter 1  What Is artIfICIal IntellIgenCe?
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networks; inductive logic programming; explanation-based, natural 

language processing; decision tree; and reinforcement learning.

Systems that have hard-coded knowledge bases will typically 

experience difficulties in new environments. Certain difficulties can be 

overcome by a system that can acquire its own knowledge. This capability 

is known as machine learning. This requires knowledge acquisition, 

inference, updating and refining the knowledge base, acquisition of 

heuristics, and so forth.

Machine learning is covered in greater depth in Chapter 3.

 What Is Data Science?
All AI tasks will use some form of data. Data science is a growing discipline 

that encompasses anything related to data cleansing, extraction, 

preparation, and analysis. Data science is a general term for the range of 

techniques used when trying to extract insights (i.e., trying to understand) 

and information from data.

The term data science was phrased by William Cleveland in 2001 to 

describe an academic discipline bringing statistics and computer science 

closer together.

Teams working on AI projects will undoubtedly be working with 

data, whether little or big in volume. In the case of big data, real-time 

data usually demands real-time analytics. In most business cases, a data 

scientist or data engineer will be required to perform many technical 

roles related to the data including finding, interpreting, and managing 

data; ensuring consistency of data; building mathematical models using 

the data; and presenting and communicating data insights/findings to 

stakeholders. Although you cannot do big data without data science, you 

can perform data science without big data—all that is required is data.

Because data exploration requires statistical analysis, many academics 

see no distinction between data science and statistics. A data science team 

(even if it is a team of one) is fundamental to deploying a successful project.
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The data science team typically performs two key roles. First, 

beginning with a problem or question, it is seeking to solve it with data; 

and second, it is using the data to extract insight and intelligence through 

analytics (Figure 1-3).

Figure 1-3. Data science process

 Learning from Real-Time, Big Data
AI had previously been stifled by the technology and data at its disposal. 

Before the explosion of smartphones and cheaper computing, datasets 

remained limited in respect to their size, validity, and representative rather 

than real-time nature.

Today, we have real-time, immediately accessible data and tools that 

enable rapid analysis. Datafication of modern-day life is fuelling machine 

learning’s maturity and is facilitating the transition to an evidence-based, 

data-driven approach. Datafication refers to the modern-day trend of 

digitalizing (or datafying) every aspect of life). Technology is now agile enough 

to access these huge datasets to rapidly evolve machine learning applications.
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Both patients and healthcare professionals generate a tremendous 

amount of data. Phones collect metrics such as blood pressure, 

geographical location; steps walked, nutritional diaries; and other 

unstructured data such as conversations, reactions, and images.

It’s not just digital or clinical data either. Data extraction techniques 

can be applied to paper documentation, or images scanned, to process the 

documents for synthesis and recall.

Healthcare professionals collect health biomarkers alongside other 

structured metrics. Regardless of the source of data, to learn, data must 

be turned into information. For example, an input of a blood glucose 

reading from a person with diabetes into an app has far more relevance 

when blood glucose level targets are known by the system so that it can be 

understood whether the input met the recommended target range or not.

In the twenty-first century, almost every action leaves some form of 

transactional footprint. The Apple iPhone 6 is over 32,000 times faster than 

the Apollo-era NASA computers that took man to the moon. Not only are 

computers smaller than ever, but they are also more powerful than ever. With 

organizations capitalizing on sources of big data, there has been a shift toward 

embedding learnings from data into every aspect of the user experience—from 

buying a product or service to the user experience within an app.

The value of data is understood when it is taken in its raw form and 

converted into knowledge that changes practice. This value is driven by 

project and context. For example, the value may be as the result of faster 

identification of shortfalls in adherence, compliance, and evidence-based 

care. It may be better sharing of data and insights within a hospital or 

organization or more customized relationships with patients to drive 

adherence, compliance, and boost self-care. Equally, it may be to avoid 

more costly treatments or costly mistakes.
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 Applications of AI in Healthcare
It is unlikely artificially intelligent agents will ever completely replace 

doctors and nurses, but machine learning and AI are transforming 

the healthcare industry and improving outcomes. Machine learning is 

improving diagnostics, predicting outcomes, and beginning to scratch the 

surface of personalized care (Figure 1-4).

Figure 1-4. A data-driven, patient–healthcare professional 
relationship

Imagine a situation where you walk in to see your doctor with pain 

around your heart. After listening to your symptoms, she inputs them into 

her computer, which pulls up the latest evidence base she should consult 

to efficiently diagnose and treat your problem. You have an MRI scan, and 

an intelligent computer system assists the radiologist in detecting any 

concerns that would be too small for your radiologist’s human eye to see.

Your watch may have even been continuously collecting your blood 

pressure and pulse while a continuous blood glucose monitor had a 
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real-time profile of your blood glucose readings. Finally, your medical 

records and family’s medical history is assessed by a computer system that 

suggests treatment pathways precisely identified to you. Data privacy and 

governance aside, the implications of what we can learn from combining 

various pools of data are exciting.

By the end of this book, readers will be able to lead the development of 

their own machine learning project.

 Prediction
Technologies already exist that monitor data to predict disease outbreaks. 

This is often done using real-time data sources such as social media as well 

as historical information from the Web and other sources. Malaria outbreaks 

have been predicted with artificial neural networks, analyzing data including 

rainfall, temperature, number of cases, and various other data points.

 Diagnosis
Many digital technologies offer an alternative to non-emergency health 

systems. Considering the future, combining the genome with machine 

learning algorithms provides the opportunity to learn about the risk 

of disease, improve pharmacogenetics, and provide better treatment 

pathways for patients.[3]

 Personalized Treatment and Behavior 
Modification
A digital therapy from Diabetes Digital Media, the Low Carb Program, 

assists people with type 2 diabetes and prediabetes to reverse (i.e., place 

into remission) their condition. The app provides personalized education 
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and integrated health tracking, learning from the user’s and wider 

community’s progress. At the end of a year, most members who complete 

the program reduce medication dependency, saving over $1,015 per 

patient per year in medication “deprescription.”[4]

 Drug Discovery
The use of machine learning in preliminary drug discovery has the 

potential for various uses, from initial screening of drug compounds to 

predicted success rate based on biological factors. This includes R&D 

discovery technologies like next-generation sequencing.

Drugs do not necessarily need to be pharmacological in their 

appearance. The use of digital solutions and aggregation of real-world 

patient data are providing solutions to conditions once considered to be 

chronic and progressive. The Low Carb Program app for example, used 

by over 300,000 people with type 2 diabetes places the condition into 

remission for 26% of the patients who complete the program at 1-year.[5]

 Follow-Up Care
Hospital readmittance is a huge concern in healthcare. Doctors, as well 

as governments, are struggling to keep patients healthy, particularly 

when returning home following hospital treatment. Organizations such 

as NextIT have developed digital health coaches, similar to a virtual 

customer service representative on an e-commerce site. The assistant 

prompts questions about the patient’s medications and reminds them to 

take medicine, queries them about their condition symptoms, and conveys 

relevant information to the doctor.
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 Realizing the Potential of AI in Healthcare
For AI and machine learning to be fully embraced and integrated within 

healthcare systems, several key challenges must be addressed.

 Understanding Gap
There is a huge disparity between stakeholder understanding and 

applications of AI and machine learning. Communication of ideas, 

methodologies, and evaluations are pivotal to the innovation required to 

progress AI and machine learning in healthcare. Encouraging the adoption 

of data-driven strategies Data, including the sharing and integration 

of data, is fundamental to shift healthcare toward realizing precision 

medicine.

Developing data science teams, focused on learning from data, is 

key to a successful healthcare strategy. The approach required is one of 

investment in data. Improving value for both the patient and the provider 

requires data and hence data science professionals.

 Fragmented Data
There are many hurdles to be overcome. Data is currently fragmented and 

difficult to combine. Patients collect data on their phones, Fitbits, and 

watches, while physicians collect regular biomarker and demographic 

data. At no point in the patient experience is this data combined. Nor 

do infrastructures exist to parse and analyze this larger set of data in a 

meaningful and robust matter. In addition, electronic health records 

(EHRs), which at present are still messy and fragmented across databases, 

require digitizing in a mechanism that is available to patients and 

providers at their convenience.
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 Appropriate Security
At the same time, organizations face challenges of security and meeting 

government regulation specifically with regards to the management 

of patient data and ensuring its accessibility at all times. What’s more, 

many healthcare institutions are using legacy versions of software that 

can be more vulnerable to attack. The NHS (National Health Service) 

digital infrastructure was paralyzed the wrath of the ransomware 

WannaCry in 2017. The ransomware, which originated in America, 

scrambled data on computers and demanded payments of $300 to $600 

to restore access.[6]

Hospitals and GP surgeries in England and Scotland were among 

over 16 health service organizations hit by the “ransomware” attack. The 

impact of the attack wasn’t just the cost of the technological failure: it had 

a bearing on patients’ lives. Doctors’ surgeries and hospitals in some parts 

of England had to cancel appointments and refuse surgeries. In some 

areas, people were advised to seek medical care in emergencies only. The 

NHS was just one of many global organizations crippled through the use of 

hacking tools; and the ransomware claimed to have infected computers in 

150 countries.

 Data Governance
With this comes the topic of data governance. Medical data is personal 

and not easy to access. It is widely assumed that the general public would 

be reluctant to share their data because of privacy concerns. However, a 

Wellcome Foundation survey conducted in 2016 on the British public’s 

attitude to commercial access to health data found that 17% of people would 

never consent to their anonymized data being shared with third parties.[7]

Adhering to multiple sets of regulation means disaster recovery 

and security is key, and network infrastructure plays a critical role in 

ensuring these requirements can be met. Healthcare organizations require 
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modernization of network infrastructure to ensure they are appropriately 

prepared to provide the best patient care possible. The case for this is 

highlighted by the fact that the bulk of NHS computers in 2018 use Internet 

Explorer 8 as their default Internet browser - which was first launched 

almost a decade ago.[8]

 Bias
A significant problem with learning is bias. As AI becomes increasingly 

interwoven into our daily lives—integrated with our experiences at home, 

work, and on the road—it is imperative that we question how and why 

machines do what they do. Within machine learning, learning to learn creates 

its own inductive bias based on previous experience. Essentially, systems can 

become biased based on the data environments they are exposed to.

It’s not until algorithms are used in live environments that people 

discover built-in biases, which are often amplified through real-world 

interactions.

This has expedited the growing need for more transparent 

algorithms to meet the stringent regulations on drug development and 

expectation. Transparency is not the only criteria; it is imperative to 

ensure decision- making is unbiased to fully trust its abilities. People are 

given confidence through the ability to see through the black box and 

understand the causal reasoning behind machine conclusions.

 Software
Traditional AI systems had been developed in Prolog, Lisp, and ML. Most 

machine learning systems today are written in Python due to many of 

the mathematical underpinnings of machine learning that are available 

as libraries. However, algorithms that “learn” can be developed in most 

languages, including Perl, C++, Java, and C. This is discussed in more 

depth in Chapter 3.
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 Conclusion
The potential applications of machine learning in healthcare are vast 

and exciting. Intelligent systems can help us reverse disease, detect our 

risk of cancers, and suggest courses of medication based on real-time 

biomarkers.

With this also comes tremendous responsibility and questions of 

wider morality. We don’t yet fully understand what can be learned from 

health data. As a result, the ethics of learning is a fundamental topic for 

consideration.

On the basis that an intelligent system can detect the risk of disease, 

should it tell the patient it is tracking the impending outcome? If an 

algorithm can detect your risk of pancreatic cancer—an often-terminal 

illness—based on your blood glucose and weight measurements, is it 

ethical to disclose this to the patient in question? Should such sensitive 

patient data be shared with healthcare teams - and what the unintended 

consequences of such actions?

The explosion in digitally connected devices and applications of 

machine learning are enabling the realization of these once-futuristic 

concepts, and conversation around these topics is key to progress.

And if a patient opts out of sharing data, is it then ethical to generalize 

based on known data to predict the same illness risk? And what if I 

can't get life insurance without this pancreatic cancer check? There are 

considerable privacy concerns associated with the use of a person’s data 

and what should be private or not, and equally as to what data is useful. 

Invariably, the more data available, the more precise a decision can be 

made—but exactly how much it too much is another question. The driving 

factor is determining the value of data, which will be discussed further in 

Chapter 2.

The ethics of AI are currently without guidelines, regulations, or 

parameters on how to govern the enormous treasure chest of data and 

opportunity. Many assume that AI has an objectivity that puts it above 
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questions of morality, but that’s not the case. AI algorithms are only as fair 

and unbiased as the learnings, which come from the environmental data. 

Just like social relationships, political and religious affiliations, and sexual 

orientation can be revealed from data, learning on health data is revealing 

new ethical dilemmas for consideration.

Data governance and disclosure of such data still requires policy, at the 

national and international level. In the future, driverless cars will be able 

to use tremendous amounts of data in real time to predict the likelihood 

of survival. Would it be ethical for the systems to choose who lives or dies 

or for a doctor to decide whom to treat based on the reading from two 

patients’ Apple Watches?

In reality, this is just the beginning. As technologies develop, new and 

improved treatments and diagnoses will save more lives and cure more 

diseases. With the future of medicine grounded in data and analytics, it 

begs the question as to whether there will ever be enough data.
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CHAPTER 2

Data
“The plural of anecdote is data.”

—Raymond Wolfinger

Data is everywhere. Global disruption and international initiatives are 

driving datafication. Datafication refers to the modern-day trend of 

digitalizing (or datafying) every aspect of life. This data creation is enabling 

the transformation of data into new and potentially valuable forms. Entire 

municipalities are being incentivized to become smarter. In the not too 

distant future, our towns and cities will collect thousands of variables in 

real time to optimize, maintain, and enhance the quality of life for entire 

populations. One would reasonably expect that as well as managing traffic, 

traffic lights may also collect other data such as air quality, visibility, and 

speed of traffic. As a result of big data from connected devices, embedded 

sensors, and the IoT, there is a global need for the analysis, interpretation, 

and visualization of data.

 What Is Data?
Data itself can take many forms—character, text, words, numbers, pictures, 

sound, or video. Each piece of data falls into two main types: structured 

and unstructured.
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At its heart, data is a set of values of qualitative or quantitative 

variables. To become information, data requires interpretation. 

Information is organized or classified data, which has some meaningful 

value (or values) for the receiver. Information is the processed data on 

which decisions and actions should be based.

Healthcare is undergoing a data revolution, thanks to two huge 

shifts: the need to tame growing cost pressures, which is generating new 

incentives and reimbursement structures, and digital health, which is 

democratizing healthcare by empowering consumers through their digital 

devices.

Clinical trends are changing. The advent of social media and 

immediate access to information through the Internet and health 

communities mean that patients are clued up about their health. Patients 

are generating data constantly and want to own and transfer their data 

between services. Concurrently, medicine is striving for personalized care, 

led through an evidence-based approach to decision-making. Patients and 

healthcare professionals alike are vocal in their appetite for all available 

clinical data to make more effective treatment decisions based on current 

evidence. A Diabetes.co.uk study in 2018 demonstrated that one in three 

patients would like to share their data with their healthcare professional, 

but only one in five patients can do so.[9]

Aggregating individual datasets into more significant populations also 

provides more robust evidence because subtleties in subpopulations may 

be infrequent in that they are not readily apparent in small samples. For 

instance, aggregating patients with type 1 and type 2 diabetes may present 

health conditions such as retinopathy with more confidence than separate 

datasets.
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The incorporation of data in modern healthcare provides an 

opportunity for significant improvements within a plethora of areas. As 

medicine evolves to become evidence based and personalized, data use 

can be used to improve

• Patient and population wellness

• Patient education and engagement

• Prediction of disease and care risks

• Medication adherence

• Disease management

• Disease reversal/remission

• Individualization and personalization of treatment  

and care

• Financial, transactional, and environmental 

forecasting, planning, and accuracy

Data facilitates information. Information leads to insights, and insights 

lead to the making of better decisions.

 Types of Data
Structured data typically refers to something stored in a database—in a 

structure that follows a model or schema. Almost every organization will be 

familiar with this form of data and may already be using it effectively. Most 

organizations will store at least some form of data in Excel spreadsheets, for 

example. Within a clinical setting, EHRs may also take a similar, structured 

form. Readings from embedded sensors, smartphones, smartwatches, and 

IoT devices are typically forms of structured data—whether that be the 

provision of blood glucose readings, steps walked, calories burned, heart 

rate, or blood pressure.
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Structured data is similar to a machine language. Highly organized in 

its format, structured data facilitates simple, straightforward search and 

information retrieval operations. Structured data would typically be stored 

in a relational database for this purpose.

Unstructured data refers to everything else. Unstructured data does 

not have a predefined model or schema. Data that is unstructured has no 

identifiable structure within it, and this presents problems for querying 

and information retrieval. E-mails, text messages, Facebook posts, Twitter 

tweets, and other social media posts are good examples of unstructured 

data.

The Gartner report has indicated that data volume is set to grow 

800% over the next 5 years, and 80% of this data will be in the form of 

unstructured data.[10]

The problem that unstructured data presents is one of volume. The 

lack of structure makes compilation and interpretation a resource- 

intensive task in regard to time and energy. Any organization would 

benefit from a mechanism of unstructured data analysis to reduce the 

resource costs unstructured data add to any organization.

Structured data is traditionally easier to analyze than unstructured 

data due to unstructured data’s raw and unorganized form. However, 

analytics of unstructured, informal datasets is improving, with the use of 

data science and machine learning methods such as Natural Language 

Processing (NLP) assisting in the understanding and classification of 

sentiment.

It may not always be possible to transform unstructured data into a 

structured model. For instance, the transmission of information through 

an e-mail or notification holds data such as the time sent, subject, and 

sender as uniform fields. However, the contents of the message would not 

be easily dissected and categorized.
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Semi-structured data fits the space between structured and 

unstructured data. Semi-structured data does not necessarily conform with 

the formal structures of data schemas associated with relational databases 

or data tables. However, semi-structured data may contain tags or markers 

to separate semantic elements and enforce grouping of records and fields 

within the data. Languages such as JSON (JavaScript Object Notation) and 

XML (Extensible Markup Language) are all forms of semi-structured data.

Data is the fuel required to learn in an intelligent system, the most 

critical component for successful AI. It is categorized into five sources:

• Web and social media data—clicks, history, health forums

• Machine-to-machine data—sensors, wearables

• Big transaction data—health claim data, billing data

• Biometric data—fingerprints, genetics, biomarkers

• Human-generated data—e-mail, paper documents, 

electronic medical records

When thinking about typical Excel spreadsheets, and in the domain of 

machine learning, the following definitions are also useful:

• Instance: A single row of data or observation.

• Feature: A single column of data. It is a component of 

the observation.

• Data type: This refers to the kind of data represented by 

the feature (e.g., Boolean, string, number)

• Dataset: A collection of instances used to train and test 

machine learning models.

• Training dataset: Dataset used to train the machine 

learning model

• Testing dataset: Dataset used to determine  

accuracy/performance of the machine learning model.
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 Big Data
The term big data is given to the collection of voluminous, traditional, 

and digital data that are sources for discovery and analysis. Big data is 

a popular term that defines datasets that are too big to be stored and 

processed in a conventional relational database system. In this way, the 

term big data is vague—while size is undoubtedly a part of big data, scale 

alone doesn’t tell the whole story of what makes big data truly big.

Through the analytics of big data, we can uncover hidden patterns, 

unknown correlations, trends, preferences, and other information that 

can help stakeholders make better and more informed decisions. Machine 

learning provides a toolbox of techniques that can be applied to datasets 

for this very purpose.

Big data was first described by Laney in 2001 as having the following 

characteristics, also known as the 3 Vs (Figure 2-1).[11]

• Volume—the quantity of generated and stored data. 

Big data is typically high in volume. The sheer size of 

data brings with it its intricacies in the form of storage, 

indexing and, retrieval.

• Variety—big data is varied in the types and nature of 

data, requiring efficient storage and analysis as well as 

systems for processing such data.

• Velocity—big data is received at a speed that brings its 

demands and challenges.
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Data science has been discussing the 3 Vs of big data for some time. 

However, there are two other aspects of data to consider that are perhaps 

more important than the 3 Vs of big data: the concepts of data veracity 

and data value. An article by Mark van Rijmenam proposed 4 more Vs to 

further understand the incredibly complex nature of big data.[12]

Further still, there are a total of 10 Vs (Figure 2-2).[13] In reality, 

differing subsets of Vs are important for organizations to keep in mind 

when developing a data strategy. A subset of the many Vs now proposed 

have been included here.

Figure 2-1. The 3 Vs of data
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In 2016, a Gartner survey of 199 members demonstrated that 

investment in big data was increasing; but the investigation showed signs 

of slowing growth, with fewer companies having a future intent to invest 

in big data initiatives. Only 15% of businesses reported deploying their big 

data project, indicating that the adoption curve is still maturing and that 

talent and expertise is in high demand.[14]

Patients and physicians are driving the adoption of big data. Patients 

drive data through clinical data, wearable devices, mobile health apps, 

and telehealth remote healthcare services. Physicians meanwhile leave 

an exhaust of clinical data (such as written notes, imaging, and insurance 

data), patient records, and machine-generated data.

 Volume
Laney defined a key characteristic of big data in 2001—the proposition 

that there is a lot of it. Key inertia in big data adoption has historically 

been the associated demand for storage and its respective costs. The 

movement of data centers from being locally housed to existing in the 

cloud has quashed this concern. This has significantly reduced storage 

costs as well as providing flexibility in data storage, collaboration, and 

Figure 2-2. The 10 Vs of data

Chapter 2  Data



29

disaster recovery. The cloud, or cloud computing, refers to distributed 

computing delivered through the Internet.

Moore’s Law has not just affected storage capacity; it has also 

benefitted cost. Moore’s Law is a statement made by Gordon Moore, the 

Intel cofounder in 1965. Moore states that the number of transistors that 

are able to fit onto an integrated circuit doubles approximately every  

18 months. In 1981, the price of a gigabyte of storage was USD 300,000. In 

2004, this was $1.00; and it was $0.10 in 2010. Today, 1GB can be rented in 

the cloud for $0.023 per month, with the first year of storage free.[15]

Healthcare, whether that be public health services, governments, 

pharmaceutical organizations, or global billpayers, is no stranger to big 

data. Data is continuously collected both digitally and nondigitally and 

spans a variety of patient, behavioral, epidemiological, environmental, and 

medical information. Data is consumed, managed, and generated for use 

in patient care, transactional records, research, compliance, processes, and 

regulatory requirements.

As of 2018, a patient’s EHR is not readily available digitally in a secure 

and transparent means. Many organizations are striving to place this 

information on the blockchain, which revolutionizes access to health data 

through creating decentralized network systems.

Patients and healthcare organizations are adopting smartphones, 

wearables such as smartwatches and fitness trackers, home sensors, 

intelligent personal assistants, and social networks within their environments. 

This data is plentiful, accessible, and determined to be reliable. However, it is 

currently not used by most healthcare providers, highlighting the following:

• Patient data generation happens outside of the 

healthcare system.

• Patient-generated data needs to be integrated and 

explored within a more extensive patient record or 

health timeline.
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• Patient data extends beyond medical markers to 

more holistic markers including behavioral and 

environmental health.

• There is an enormous interest for healthcare 

organizations still to be realized from opportunity and 

cost benefits.

A recent initiative in the United Kingdom saw the prevalence of type 

1 diabetes in children geographically mapped through the use of social 

media hashtag #facesofdiabetes and #letstalk. Although this data is strictly 

not clinical, it highlights the power of user data and how it can be in real 

time for interpretation. The sentiment of users was also profiled, with 

appropriate support provided to users through the use of machine learning 

tools to classify post types.[16]

Datafication is well underway in the finance, energy, and retail sectors. 

With the prevalence of the health wearables and mobile healthcare, every 

individual and organization has the potential to tap into this growing data 

volume.

 Coping with Data Volume

For big data to work for your organization, it is vital that storage is efficient 

and cost-effective. Choosing the most appropriate storage solution is 

dependent on several factors:

• Approach. Data storage costs increase alongside storage 

requirements. Hence, determining whether specific 

data is to be collected or whether a catchall approach to 

data is required depends on the project and regulatory 

requirements. Low-cost cloud storage providers make 

catchall approaches feasible. Beginners to data science 

and machine learning may wish to determine a set of 

key data metrics for evaluation for the sake of simplicity.
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• Types of data. Consider whether structured or 

unstructured data is to be stored—and the source: for 

example, audio or video content, text, images, and so 

forth. Video, audio, or image storage will require more 

resources compared to text.

• Deployment. Determine how the solution will be 

deployed, which could include locally, internally, or 

cloud-based.

• Access. Determine how the solution will be accessed: 

through an app, web interface, intranet, and so forth.

• Operations. This includes data structure, architecture, 

archiving, recovery, event logging, and legal 

requirements.

• Future use. This involves planning for further sources 

of data, extensions to the system, and potential future 

use cases.

The distributed nature of datasets has meant that inertia to the 

adoption of big data has previously referred to the fragmented nature of 

such systems.

 Variety
The second V of data is variety. This refers not only to variations in the 

types of data but also sources and use cases. Twenty years ago, we used to 

store data in the form of spreadsheets and databases. Today, data may be 

in the form of photographs, sensor data, tweets, encrypted files, and so on. 

This variety of unstructured data creates problems for storage, mining, and 

analyzing data. This is also an area that machine learning can significantly 

assist humans in.
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Data is available in the form of structured data (in the form of clinical 

records and results), unstructured data (e.g., in the form of communication 

and interaction data), and also semi-structured (e.g., an X-ray with written 

annotations). The ever-increasing digitalization of services and the broad 

adoption of wearables and cyber-physical devices is continuously enabling 

new and exciting sources of data for discovery and analysis. This enables 

the creation of new risk models powered by sensor data, clinical records, 

communication and engagement, demographics, and billing records—which 

can make accurate predictions and save precious time and resources.

 The Internet of Things

The Internet of Things refers to the rapidly increasing variety of smart, 

interconnected devices and sensors and the volumes of data they generate 

(Figure 2-3). This data is transferred between devices, services, and 

ultimately, people. You may also hear similar terms such as the Industrial 

Internet of Things and the Healthcare Internet of Things, which refer to 

their respective vertical, or industry, within the Internet of Things.

Figure 2-3. Evolution of the Internet of Things
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Today, a variety of devices monitor every sort of patient  

behavior—from glucose monitors to fetal monitors to electrocardiograms 

to blood pressure. Many of these measurements require a follow-up visit  

with a healthcare professional. Smarter monitoring devices communicating 

with other devices, services, and systems could greatly refine this 

process, possibly lessening the need for direct clinical intervention and 

perhaps replacing it with a phone call from a nurse. For example, current 

innovations in smart devices include medication dispensers that can 

detect whether the medication has been taken—with data transmission 

occurring via Bluetooth. If it is determined that the user has not taken their 

medication, they are contacted via telephone to discuss and encourage 

adherence to their medication regime. There are a wealth of opportunities 

enabled by the Internet of Things to not only improve patient care but to 

reduce healthcare costs at the same time.

Variety of big data includes traditional data sources as well as newer 

sources of both structured and unstructured data. As the variety of data 

grows, so too does the potential of what algorithms and machine learning 

tools deployed in healthcare can achieve.

As well as a variety of sources, variety in big data can come in the form 

of the following:

• Data types—text, numbers, audio, video, images, and 

so forth.

• Function—use cases and user requirements.

• Value of data—is the data fit for a purpose? This would 

be a focus on quality in the context of the data’s use. 

More data does not necessarily mean better data.

Just as there are a variety of data sources, value, types, and use cases, 

there is also a variety of applications for data. These include access 

points (i.e., web, mobile, SaaS [software as a service], API [application 

programming interface]) and users (typically either humans or 

machines).
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Data variety is increasing exponentially. As new healthcare IoT devices 

develop, it will become imperative to identify useful data features from noise.

 Legacy Data

Legacy data, whether computer-based or non-computer-based, can 

also be used in your projects. An increasing number of services enable 

digitalization for natural language processing or classification purposes. 

By using legacy data, stakeholders can maximize the insights from 

underutilized data. Legacy, or traditional, data may also be referred to as 

little or small data, discussed later in this chapter.

Typically, legacy data is fragmented and incomplete, particularly for the 

criteria desired today. For example, many records from more than 10 years 

ago may not have an associated e-mail address or correct phone number.

 Velocity
The third V of big data is velocity, referring to the speed at which data is 

created, stored, and prepared for analysis and visualization. The velocity 

of data imposes unique demands on underlying computer hardware 

infrastructures.

A benefit of cloud computing has been the ability to quickly store and 

process the volume and variety of big data that would typically overwhelm 

a traditional server. Cloud computing is the preferred route for big data 

projects due to flexibility regarding storage and cost. Cloud providers can 

store petabytes of data and scale up thousands of servers in real time to 

requirements. Perhaps more valuable is that computational power is also 

inexpensive and distributable.

After the Haiti earthquake in 2010, Twitter data was a quicker way of 

detecting and tracking the deadly cholera outbreak compared to traditional 

methods. A subsequent research study determined that social media 

platforms outperformed official methods of monitoring disease prevalence 

in both speed and accuracy of detecting the progress of cholera.[17]
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In the big data era, data is created in real time or near real time. The 

ubiquity of cyber-physical devices, embedded sensors, and other devices 

means that data transfer can occur at the moment it is created, bar a MAC 

address and Internet access.

The speed at which data is created is unimaginable. It is widely 

understood that the data generated in the previous 2 years is greater than 

the data created from the start of time up until then.[18] The challenge 

organizations have is to cope with the enormous speed at which data is 

created and consumed in real time.

As the penetration of wearable devices and sensors continues, so too 

will their application within clinical healthcare (Figure 2-4). The key to 

maximum clinical value is in the integration of various and heterogeneous 

data sources.

Data Type Example Characteristics

patient 

behavior and 

sentiment

Social media 

Smartphones  

Web forums

Most data is unstructured or semi-

structured.  

Data is large and in real time Opportunities 

for learning, engagement, and 

understanding.  

typically open source

patient health 

data

Sensors  

Blood glucose 

meters

Smartphones  

Fitness trackers  

Images

Owned by patient.  

Data is typically device reported.  

Storage requirements typically low. Image 

storage requirements vary depending on 

data required for storage.  

Sensor data is high velocity.  

Structured data enables ease of 

classification and pattern detection.  

Some items may require digitalization

(continued)
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Data Type Example Characteristics

pharmaceutical 

and r&D data

Clinical trial data 

population data

encompasses population and disease data 

owned by pharmaceutical companies, 

research, academia, and the government

health data on 

the Web

patient portals 

(Diabetes.co.uk) 

Digital interventions 

(e.g., Low Carb 

program, Gro health, 

hypo program)

Useful metadata.  

typically device reported rather than clinical

Clinical data ehr  

patient registries  

physician data  

Images (scans, etc.)

Structured in nature.  

Owned by providers

Claims, cost, 

administrative 

data

Claims data 

expenses data

Structured in nature.  

encompasses any datasets relevant for 

reimbursement

transactional 

data

health information 

exchanges

May require preprocessing to become 

useful data
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Figure 2-4. Wearable biomedical sensors

The traditional 3 Vs give an insight into the scale of data, and the rapid 

speeds at which these vast datasets grow and multiply. However, data 

variety only begins to scratch the surface of the depth and challenges of  

big data.

The power of big data was best demonstrated by monolith Google in 

2009 when it was able to track the spread of influenza with only a one-day 

delay across the United States, faster than the Centers for Disease Control 

and Prevention (CDC), through the analysis of associated search terms.[19]

However, in 2013, Google’s Flu Trends got it wrong—which spurred 

questions on the concepts of value and validity of data.

In a clinical setting, data value and veracity would inherit an elevated 

position, as clinical decisions are made on data with lives at risk and go far 

beyond transactional implications.

 Value
Value refers to the usefulness of data. Key to building trust in your data is 

ensuring its accuracy and usability. In healthcare, this would be evaluated 

through qualitative and quantitative analysis. Value can be circumscribed 
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through a variety of factors, primarily clinical impact on patient outcomes 

or behavior modification, patient and stakeholder engagement, impact  

on processes and workflows, and monetization (cost saving, cost  

benefits, etc.).

McKinsey stated that the potential annual value of big data to US 

Healthcare is $300 billion. They also mention that big data has a potential 

annual value of €250 billion to Europe’s public sector administration.  

Even more, in their well-regarded report from 2011, they state that the 

potential annual consumer surplus from using personal location data 

globally could be up to $600 billion in 2020.[20]

Data’s value comes from the analyses conducted on it. It is this analysis 

of data that enables it to be turned into information, with the aim of 

eventually turning it into knowledge. The value lies in how organizations 

use available data and become information centric and data-driven for 

purposes of decision-making. Value is not found, it is made. The key 

is to make the data meaningful to your users and your organization by 

managing it well.

Google did a perfect job in tracking the searches for flu symptoms 

in 2013. However, it had no way of knowing that its results weren’t valid 

regarding predicting flu prevalence. Google Flu Trends, at least in this 

instance, wasn’t providing valuable results for this use case. To add insult 

to injury, Google was never to know that real-world cases of flu failed 

to match the search distribution and frequency—so it could never do 

anything about it. Perhaps if this project was to be extended, analyzing 

social media posts may have been more valuable in determining flu 

prevalence. Social media and wider unstructured data sources provide a 

wealth of often unexplored information.

Identifying a population at risk of type 2 diabetes, predicting atrial 

fibrillation (AFIB), assisting patients with recovery from health events, or 

recommending the latest evidence-based medicine therapy to a patient 

are tasks with a clear and valuable return on investments.
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 Veracity
Worthless data, no matter how plentiful, is always going to be worthless. 

Veracity refers to data truthfulness and whether data is of optimal quality 

and suitability in the context of its use relating to the biases, noise, and 

abnormality in data.

Various factors can affect the veracity of data, including the following:

• Data entry. Was data entered correctly? Have there been 

any errors or events? Is there an audit trail of data entry?

• Data management. What is the integrity of the data 

moving through the system?

• Integration quality. Is data appropriately referenced, 

commented on, and unique?

• Staleness. Is data appropriate for use? Is it timely and 

relevant?

• Usage. Is the data available in a way that is actionable? 

Will the data be useful toward achieving business 

goals? Is it ethical to use this data?

The six Cs of trusted data can help assess whether the data you are 

using for your projects has veracity. It is essential to ensure your datasets 

are clean, complete, current, consistent, and compliant.

• Clean data. This is the result of good data quality 

procedures such as deduplication, standardization, 

verification, matching, and processing. Clean data 

enables robust decisions to be made on quality,  

non- tainted data. Clean data is the biggest challenge 

for user trust.
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• Complete data. This is the result of consolidated data 

infrastructures, techniques, and processes that enable 

robust decision-making.

• Current data. Fresh data is normally considered 

more trustworthy over stale data. The question then 

becomes, at what point is data not current? As real- 

time, current data grows, deciphering the signal from 

noise can become a more challenging task.

• Consistent data. Data must be consistent (thus 

enabling machine readability). This is required for 

cross-compatibility of systems and applies to  

metadata also.

• Compliant data. Compliance regulations can come 

from various sources such as stakeholders, clients, legal 

legislation, or as the result of a new policy. Although 

many data infrastructures and standards exist, data 

science as a category is still coming up with first-time 

problems for which governance and legislation are 

required. Compliance can mean different things to 

internal and external stakeholders. Internally, there will 

be standards to ensure data is compliant with quality, 

security, and privacy procedures. All stakeholders need 

to trust that data has been accessed and distributed 

by internal and external regulations. Typically, 

organizations may have a governance board for data 

and information.

The sixth C is collaborative data, which refers to collaboration over 

data to ensure that data management and business management goals are 

aligned. The sixth C refers more to the approach to data than the  

data itself.
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While most advocate complete veracity in data for clinical care, the 

gold standard of clinical care is harder to achieve in real-world scenarios 

with such a varied input of data. Enforcing data quality may be considered 

too difficult to achieve cost-effectively. In this case, training an intelligent 

system to learn to estimate for parameters not seen may be of use. Veracity 

can refer to ensuring sizeable training samples for rich model-building and 

validation, which empowers whole-population analytics.

Veracity can be applied to the analyses performed on the data and 

ensuring they are correct. Not only does data need to be trustworthy, but 

so too do the algorithms and systems interpreting it.

Data entry can be a risky point that goes unnoticed without good data 

science. This is typically a human-based problem. Even in small data 

settings, humans make mistakes. To be clinically relevant, data requires 

maximum veracity. As the veracity of data improves, machine learning on 

this data enables more veracious conclusions.

 Validity
Similar to big data veracity, there is also an issue of data validity, referring 

to whether is data is correct and accurate for the intended use. In clinical 

applications, validity may be considered to be the prioritized V—to ensure 

that only useful and relevant data is used. Truthfulness or veracity of data 

is absolute, whereas validity is contextual.

 Variability
Big data is variable. Variability defines data where the meaning is regularly 

changing. Variability is very relevant in performing sentiment analyses. 

For example, in a series of tweets, a single word can have a completely 

different meaning.
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Variability is often confused with variety. To illustrate, a florist may 

sell five types of roses. That is variety. Now, if you go to the florist for two 

weeks in a row and buy the same white rose ever day, each day it will have 

a subtly different form and fragrance. That is variability.

To perform proper sentiment analyses, algorithms need to be able to 

understand the context of texts and be able to decipher the exact meaning 

of a word in that particular context. This is still very difficult, even with 

progress in natural language processing abilities.

 Visualization
Visualization is the final of the 7 Vs, referring to the appropriate 

analyses and visualizations required on big data to make it readable, 

understandable, and actionable. Visualization may not sound complex; 

however, overcoming the challenge of visualizing complex datasets is 

crucial for stakeholder understanding and development. Quite often, it is 

data visualization that becomes the principal component in transferring 

knowledge learned from datasets to stakeholders.

 Small Data
Little data (or small data) is a direct contrast to big data. Big data is 

distributed, varied, and comes in real time; whereas small data is data 

that is accessible, informative, and actionable as a result of the format 

and volume. Examples of small data include patient medical records, 

prescription data, biometric measurements, a scan, or even Internet 

search histories. In comparison to organizations and services such as 

Google and Amazon, the amount of data is far smaller in comparison.

Analytics has gone through a rapid evolution spurned by the adoption 

and demands of big data. Going back to traditional datasets and applying 
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more modern techniques such as machine learning should not be 

overlooked and is a great place for a data scientist to start. It’s not the size 

of the data; it’s what you do with it that counts.

 Metadata
Metadata is data about data—which is descriptive data about each asset, 

or individual piece, of data. Metadata provides granular information about 

a single file supporting the facility to discover patterns and trends from 

metadata as well as the data it is supporting.

Metadata gives information about a file’s origin, date, time, and 

format; and it may include notes or comments. It is key to investing 

resources, predominantly time, in strategic information management to 

make sure assets are correctly named, tagged, stored, and archived in a 

taxonomy consistent with other assets in the collection. This facilitates 

quicker dataset linkage and maintains consistent methodology for asset 

management to ensure files are easy to find, retrieve, and distribute.

Big data hype has overshadowed metadata. However, with big data comes 

big metadata, enabling organizations to generate knowledge and leverage 

value. For example, Google and Facebook use taxonomy languages such as 

Open Graph[21] that help create a more structured web, enabling more robust 

and descriptive information to be provided to users. This, in turn, provides 

human-friendly results to users, optimizing click through and conversion.

Metadata can be very useful in any data-led project. For instance, a 

machine learning algorithm could use the metadata belonging to a piece 

of music, rather than (or alongside) the actual music itself, to be able to 

suggest further relevant music. Features of the music such as genre, artist, 

song title, and year of release could be obtained from metadata for  

relevant results.
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 Healthcare Data—Little and Big Use Cases
Healthcare stakeholders understand they are surrounded by masses of 

data from patients, professionals, and transactions. It is key to know how to 

drive value and meet KPIs (key performance indicators). The following are 

a selection of exciting healthcare data use cases.

 Predicting Waiting Times
In Paris, France, four of the hospitals that comprise the Assistance 

Publique-Hôpitaux de Paris (AP-HP) teamed up with Intel and used 

data from internal and external sources, including 10 years of hospital 

admissions records, to determine day- and hour-based predictions of the 

number of patients expected to enter their facility.[22]

Time series analysis techniques were used to predict admission rates 

at different times. This data was made available to all surgeries and clinics 

and demonstrates an immediate way data could be used to improve 

efficiency and empower stakeholders.

Most, if not all, clinics across the world have access to similar data, 

which demonstrates just how healthcare is only beginning to scratch the 

service of data’s application.

 Reducing Readmissions
The same approach to waiting times can be used to help manage hospital 

costs. Using data analytics, at-risk patient groups can be identified based 

on medical history, demographics, and behavioral data. This can be 

used to provide the necessary care to reduce readmission rates. At UT 

Southwestern hospital in the United States, EHRs analytics led to a drop 

in the readmission rate of cardiac patients from 26.2% to 21.2% through 

successful identification of at-risk patients.[23]
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 Predictive Analytics
The preceding examples could very well use static data (i.e., non-real- 

time small data) and be fairly accurate in predicting waiting times and 

readmission intervals. The same concept of analyzing data can be used at 

scale for prediction of disease and the democratization of care.

In the United States, Optum Labs has collected the EHR for over 

30 million patients, creating a database for predictive analytics tools to 

improve the delivery of care. The intention is to enable doctors to make 

data-driven, informed decisions with proximity and therefore improve 

patients’ treatment.[24]

The robustness that 30 million health records provide allows models 

to be trained and validated to find people who fit predictive risk trends for 

certain diseases such as hypertension, type 2 diabetes, heart disease, and 

metabolic syndrome.

By analyzing patient data including age, social, economic 

demographics, fitness, and other health biomarkers, providers can 

improve care at both an individual and population level through not only 

predicting risk but through the delivery of treatments for optimal patient 

outcomes.

 Electronic Health Records
EHRs haven’t quite come to fruition as yet. The idea is theoretically 

simple: that every patient has a digital health record consisting of their 

details, demographics, medical history, allergies, clinical results, and so 

forth. Records can be shared, with patient consent, via secure computer 

systems and are available for healthcare providers from both public and 

private sectors. Each record comprises one modifiable file, which means 

that doctors can implement changes over time with no danger of data 

replication or inconsistencies.
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EHRs make perfect sense; however, complete implementation across 

a nation is proving a task. In the United States, up to 94% of hospitals 

use EHRs according to HITECH research. Europe is further behind. A 

European Commission directive has set the task of creating a centralized 

European health record system by 2020.[25]

In the United States, Kaiser Permanente has implemented a system 

that shares data across all their facilities and made it easier to use EHRs. 

A McKinsey report highlighted how the data sharing system achieved an 

estimated $1 billion in savings as the result of reduced office visits and 

lab tests. The data sharing system improved outcomes in cardiovascular 

disease.[26]

The EHR is evolving into the blockchain, which seeks to decentralize 

and distribute access to data.

 Value-Based Care/Engagement
No longer are patients considered passive recipients of care. Healthcare 

is now obliged to engage patients in their health, healthcare decision- 

making, care, and treatment. Engagement can be maintained through 

digital means. Note that patient engagement is not to be confused with 

patient experience, which is the pathway (journey) a patient may take.

Financial drivers have already seen healthcare practices becoming 

increasingly incentivized to best engage with each patient, to ensure 

services received are satisfactory and of quality.

One of the key drivers of data-driven solutions is the demand for 

patient engagement and the transition toward value-based care. Better 

patient engagement enhances trust between patients, treatment providers, 

and bill payers. Moreover, it leads to better health outcomes and cost 

savings (or some other benefit) to the provider.

Pioneering health insurance initiatives seek to engage patients with 

the goal of better health outcomes through entwining premiums to good 

health. Health innovators Diabetes Digital Media in Warwick, England, 
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are working with global insurance providers and health organizations to 

provide scalable digital health technologies for users to optimize their 

health and wellbeing.[27]

Blue Shield of California is improving patient outcomes by developing 

an integrated system that connects doctors, hospitals, and health 

coverage to the patient’s broader health data to deliver evidence-based, 

personalized care.[28] The aim is to help improve performance in disease 

prevention and care coordination.

 Healthcare IoT—Real-Time Notifications, Alerts, 
Automation
Millions of people use devices that datafy their lives toward the quantified 

self. Devices connected to the Internet currently include weighing scales; 

activity monitors (such as Fitbit, Apple Watch, Microsoft Band) that 

measure heart rate, movement, and sleep; and blood glucose meters: all 

of which send metrics in real time and track user behavior in up-to-the- 

second fashion. Early 2018 even saw the first fetal heartbeat wearable.[29]  

The data recorded could be used to detect the risk of disease, alert doctors, 

or request emergency services depending on the biometrics received. 

Many integrated devices are going beyond pulse and movement to 

measure sweat, oxidation levels, blood glucose, nicotine consumption, 

and more.

With sophisticated devices come sophisticated solutions to novel 

problems. For instance, now that heart rate monitoring is cheaper and 

more pervasive, conditions such as AFIB can be detected far easier and 

far earlier than ever before. Fluttering of one’s heart rate above 300 bpm 

(rather than 60–80 bpm) could be a symptom of AFIB. Patients diagnosed 

Chapter 2  Data



48

with the condition are 33% more likely to develop dementia; and more 

than 70% of patients will die from a stroke.[30] The treatment can often be 

simple: anticoagulants and blood thinners, which are up to 80% effective. 

Healthcare providers are moving slowly toward sophisticated toolkits to 

utilize the massive data stream created by patients and to react every time 

the results appear disturbing. This adoption is being driven by established 

digital organizations and startups in conjunction with health bill payers.

In another use case, an innovative program from the University of 

California, Irvine, gave patients with heart disease the opportunity to 

return home with a wireless weighing scale and weigh themselves at 

regular intervals. Predictive analytics algorithms determined unsafe weight 

gain thresholds and alerted physicians to see the patient proactively before 

an emergency readmittance was necessary.[31]

What is interesting to recognize is that these connected health devices 

do not necessarily motivate the audiences or populations most at risk 

of adverse health events. According to several randomized trials, Fitbit 

wearers do exercise more, but not enough to guarantee weight loss and 

improved fitness. In fact, some studies have determined they can be 

demotivating.[32] Then there is the question of accuracy. A Cleveland 

Clinic study in 2016 found that heart rate monitors from four brands on 

the market were reporting inaccurate readings 10 to 20% of the time, 

which demonstrates that there is some way to go in the precision of the 

technology.[33]

While these devices show potential, there is still the problem of an 

average abandonment rate of more than 30% after a period of engaged 

usage. The software application is now the channel for engagement, 

used as an intelligent layer on top of devices and IoT, where they can also 

introduce behavior change psychology for sustainable behavior change 

and usage.

Offering users of devices such as these tangible incentives like 

discounts on health or life insurance could become more mainstream, 
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and drive prevention of many chronic lifestyle-related diseases similar to 

incentivized car insurance with embedded black-box sensors.

Real-time alerting can also be used to notify patients of adverse 

effects of medications they are prescribed. Currently, patients wouldn’t 

receive any notification unless they were registered with the treatment 

provider. Healthcare providers can use public feeds to notify their patients 

of potential adverse effects. E-mails or text messages would suffice as a 

form of engagement and could provide as much instruction as required, 

reducing time with the clinician.

EHRs can also trigger warnings, alerts, and reminders for when a 

patient should get a new lab test; or track prescriptions to see if a patient 

has been following treatment instructions.

 Movement Toward Evidence-Based Medicine
Evidence-based medicine is a term denoting treatment given based 

on proven scientific methods in pursuit of the best possible outcomes. 

Clinical trials work on a small scale, testing new treatments in small 

groups with internal validity (i.e., no other conditions or concerns other 

than those specified), and looking at how well treatments work and 

establishing if there are any side effects. With growing datafication, there 

is also increasing “real-world evidence” or data, which can be analyzed at 

an individual level to create a patient data model and aggregated across 

populations to derive larger insights around disease prevalence, treatment, 

engagement, and outcomes. This approach improves quality of care, 

transparency, outcomes, value, and at its core, democratizes healthcare 

delivery.

Using data for similar groups of patients, we can understand the 

treatment plans patients with similar profiles have taken, allowing the best 

treatment plan to be recommended based on how others in the population 

responded to any given treatment. The recommended treatment pathway 

would be best for the patient and could be explained to both the patient 
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and healthcare professional as to why it was the best pathway to follow. 

This has roots in predictive analytics and goes beyond identification of 

populations and treatments.

By mining real-world patient data, including clinical patient records 

and real-time, personal, patient health data—and with demographic and 

health data on disease prevalence, treatment pathways, and outcomes—

we can learn about optimal treatment plans for individuals, facilitating 

precision medicine, which is the pinnacle of evidence-based medicine.

By connecting real-world patient and clinical data to the genome, 

it can be personalized down to the genetic makeup of patients and 

populations for the following:

• Prescribing of medications

• Adverse effects and reactions

• Prevention strategies

• Likelihood risk of future diseases

 Public Health
Analysis of disease patterns and outbreaks allows public health to be 

substantially improved through an analytics-driven approach. Big data can 

assist in determining needs, required services, or treatments; and it can 

predict and prevent future crises to benefit the population. By mapping 

patient location, it would be possible to predict outbreaks, such as 

influenza, that could spread within an area, making it easier to formulate 

plans for dealing with patients, vaccinations, and care delivery.

In West Africa, mobile phone location data proved invaluable in 

tracking the spread of the population—and as a result, helped to predict 

the Ebola virus’s expanse.[34]

After the Haiti earthquake in 2010, a team from Karolinska Institute 

in Sweden and Columbia University in the United States analyzed calling 
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data from two million mobile phones on the Digicel Haiti network.[35] 

Phone records were used to understand population movements and for 

the United Nations to allocate resources more efficiently. The data was also 

used to identify areas at risk of the subsequent cholera outbreak.

 Evolution of Data and Its Analytics
Proximity is driving the future. As people, patients or agents in a digital 

world, we expect a relationship regarding nearness in time between data 

that is given and feedback that is received. As the scale of data increases, 

so too does the demand that the time between data creation to insight 

and action be reduced. There is substantial economic value in reducing 

the time from detected event to automatic response. This could help spot 

fraudulent transactions before a transaction completes, or even serve 

information matched to an interest or need.

Just as data has evolved, so too has the analytics of data (Figure 2-5).  

As a concept, the analysis of data, or analytics, has gone through  

several iterations, driven by the demand for access to data to drive 

decision- making.

Figure 2-5. The evolution of big data and its analytics
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Analytics 1.0 took the form of traditional analytics on small, slower 

velocity datasets, often in the form of spreadsheets and static documents. 

This is suitable for little data. Typical analytics were descriptive and report-

based. Data would usually be structured in nature. This drove business 

intelligence in the 1990s with predefined queries and detailed or historic 

views—typically driven by web dashboards leveraging structured data like 

customer data, behavioral data, sales data, patient records, and so forth. 

Data about production processes, sales, interactions, and transactions 

were collected, aggregated, and analyzed within traditional relational 

databases. In the Analytics 1.0 era, data scientists spent much of their time 

preparing data for analysis rather than performing analytics themselves.

Analytics 2.0 marked the integration of big data with traditional 

analytics, with interfaces to support the querying of big datasets in real 

time. Big data analytics began in the 2000s, which facilitated competitive 

insight through complex queries combined with predictive views 

leveraging both structured and unstructured data such as social media, 

behavioral data, and the growing variety of user data. Big data that 

couldn’t fit or be analyzed fast enough on a centralized platform would 

be processed with frameworks such as Hadoop, an open source software 

framework for fast batch data processing across parallel servers both in the 

cloud or on-premise.

Unstructured data would be supported through more than just 

SQL (Structured Query Language) databases, supporting key and 

value, document, graph, columnar, and geospatial data. Other big data 

technologies introduced during this period include “in memory” analytics 

for fast analysis whereby data is managed and processed in memory rather 

than on disk.

Today, vast amounts of data are being created at the edge of the 

network, and the traditional ways of doing analytics are no longer viable. 

Organizations that engage with consumers—whether they make things, 

move things, consume things, or work with customers—have increasing 
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amounts of data on those devices and activities. Each device, shipment, 

and person leave a trail referred to as a data exhaust.

Analytics 3.0 marked the stage of maturity in which organizations 

realized measurable business impact from the combination of traditional 

analytics and big data. The approach supports agile insight discovery 

and real-time analysis at the point of decision. Analytics 3.0 is mostly a 

combination of conventional business intelligence, big data, and the IoT 

distributed throughout the network. Organizations can analyze those 

datasets for the benefit of customers and monetize them. They also can 

embed advanced analytics and optimization in near real time into every 

product or service decision made on the front lines of their operations.

 Turning Data into Information: Using  
Big Data
Data’s value is demonstrated in the ability to convert it into information 

that can drive actionable insight to drive behaviors and workflows. Data 

analysis/analytics is a subset of data science that seeks to draw insights 

from sources of raw data. Today’s advances in analyzing big data allow 

researchers to decode human DNA in minutes; predict where terrorists 

plan to attack; determine which gene is most likely to be responsible for 

specific diseases; and, of course, which ads you are most likely to respond 

to on Facebook.

Analysis of big data can help organizations understand the information 

contained in their data as well as identifying data most important to 

business objectives, outcomes, and decisions. Stakeholders typically want 

the knowledge that comes from analyzing data, which is determined based 

on the type of results produced and the reasoning approach.

The majority of big data is unstructured. IBM estimates that 80% of 

the world’s big data is unstructured, which includes photos, audio, video, 

documents, and interactions.[36]
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Data needs to be processed to be of value. For this to take place, 

resources are required—in the form of time, talent, and money. Herein is one 

of the inertias toward adopting big data approaches: is processing the data 

into something with usable insight worth the capital and risk of doing so?

There are four streams within the data science analytics taxonomy 

(Figure 2-6). The classifications are based on the types of results that are 

produced.

 Descriptive Analytics
Descriptive analytics brings insight to the past, focussing on the question 

of what happened, through analyzing data from history. Descriptive 

analytics uses techniques such as data aggregation and data mining 

to provide historic understanding. There is much to be learned from 

descriptive analytics. Common examples of descriptive analytics are 

reports that provide the answers to questions such as how many patients 

were admitted to a hospital last July, how many were readmitted within 30 

Figure 2-6. Streams of analytics
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days, and how many caught an infection or suffered from a mistake in care. 

Descriptive analytics serves as the first form of big data analysis.

This basic level of reporting is still lacking for many organizations. 

Proprietary data standards maintain unhelpful pits of information; a lack 

of available human expertise or proper organizational buy-in can leave 

data collecting and unused.

Data can become more valuable through dataset linking. For instance, 

linking physician appointments to hospital admissions, to education 

attendance, medication adherence, and access to services can provide 

substantial insight and understanding for health delivery optimization and 

cost savings.

Limitations of descriptive analytics are that it gives limited ability to 

guide decisions because it is based on a snapshot of the past. Although this 

is useful, it is not always indicative of the future.

 Diagnostic Analytics
Diagnostic analytics is a form of analytics that examines data to answer 

the question of why something happened. Diagnostic analytics comprises 

of techniques such as decision trees, data discovery, data mining, and 

correlations.

The next two types of analytics, predictive and prescriptive analytics, 

require the use of learning algorithms and are covered in more depth in 

Chapter 3.

 Predictive Analytics
Predictive analytics allows us to understand the future and predict the 

likelihood of a future outcome. Predictive analytics uses the data that you have 

at your disposal and attempts to fill in missing data with best-guess estimates. 
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Predictive analytics is characterized by techniques such as regression analysis, 

multivariate statistics, data mining, pattern matching, predictive modeling, 

and machine learning. Predictive analytics uses historical and current data to 

forecast the likelihood of future events or actionable outcomes.

Predictive analytics skills are in demand as healthcare providers seek 

evidence-based ways to reduce costs, take advantage of value-based 

reimbursements, and avoid the penalties associated with the failure to 

control chronic diseases and adverse events that are within their power 

to prevent. Predictive analytics is in the midst of disruption. The last 

5 years of innovation has made significant progress with measurable 

impacts to the lives of patients. Wearable technology and mobile apps 

now make it possible to spot conditions such as asthma, atrial fibrillation 

and COPD.[37]

Predictive analytics remains elusive, as it requires access to real-time 

data that allows near real-time clinical decision-making. To support this, 

medical sensors and connected devices must be fully integrated to provide 

up-to-the-moment information on patient health. Besides, clinicians 

need to be experienced in using such data. As well as using the individual 

patient’s data, more accurate diagnoses and treatments must draw from as 

much patient data as is available, including population-level data.

As data sources and technologies develop, advanced decision support 

from cognitive computing engines, natural language processing, and 

predictive analytics can help providers pinpoint diagnoses that may 

otherwise elude them. Population health management tools can highlight 

those most at risk of hospital readmission, at risk of developing costly 

chronic diseases, or responding adversely to medication.
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 Use Case: Realizing Personalized Care

Metabolic health has been demonstrated to influence the risk of a variety 

of health conditions, including type 2 diabetes, hypertension, some 

dementias, and some cancers. While acting as a digital intervention for 

type 2 diabetes, the Low Carb Program app used a variety of features in 

the form of health biomarkers and demographics including blood glucose, 

weight, gender, and ethnicity to score a patient’s metabolic health. As the 

app expanded to integrate with wearable health devices, increased weight 

and blood glucose data enabled the algorithm to extend to determine the 

likely risk of pancreatic cancer. This is communicated to patients with their 

healthcare team where relevant and is referenced through cohort data 

comparison.[38]

Users receive supported notifications that their data does not seem 

to fit within the demographic that is expected of them and prompts the 

user to speak to their healthcare professional. As demonstrated in this 

example, as further biosensors and algorithms are developed, the ethical 

implications of predictive analytics is significant.

 Use Case: Patient Monitoring in Real Time

A typical hospital ward would see ward nurses manually visit patients to 

monitor and confirm vital health signs. However, there is no guarantee 

that the patient’s health status won’t deviate, for better or worse, between 

the time of scheduled visits. As a result, caregivers often react to problems 

as the result of adverse events, whereas arriving earlier in the process can 

make a significant difference to patient well-being. Wireless sensors can 

capture and transmit patient vitals far more frequently than human beings 

can visit the bedside. Alan Gates’ Hortonworks used this data to provide 

caregivers data in real time to enable them to respond more promptly to 

unexpected changes.
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Over time, the same data could be applied to predictive analytic 

techniques to determine the likelihood of an emergency before it can be 

detected with a bedside visit.

 Prescriptive Analytics
Prescriptive analytics strives to make decisions for optimal outcomes: that 

is, to use all available data and analytics to inform and evolve a decision of 

what action to take—that is, smarter decisions. Prescriptive analytics attempt 

to quantify the effect of future decisions to advise on possible outcomes 

before decisions are made. At its best, prescriptive analytics predicts not only 

what will happen but also why it will happen to provide recommendations 

regarding actions that will take advantage of the predictions.

Prescriptive analytics use a combination of AI techniques and tools 

such as machine learning, data mining, and computational modeling 

procedures. These techniques are applied against input from many 

different datasets including historical and transactional data, real-time 

data feeds, and big datasets.

Prescriptive analytics performs an in-context prediction, taking into 

account the available evidence. For example, typical hospital readmission 

analytics display a forecast of patients likely to return in the next 14 to 30 

days. A more useful predictor may integrate the same dashboard with 

projected costs, real-time bed counts, available education material, and 

follow-up care. With additional information, clinicians can determine 

patients with a high risk of readmission and take actions to minimize this 

risk, resulting in improved patient outcomes and reduced consumption of 

hospital resources. Population management approaches could consider 

patients who are obese, adding filters for factors such as type 2 diabetes 

risk and metabolic syndrome risk to determine where to focus treatment 

and which treatments to target. Pharmaceutical companies can use 

prescriptive analytics to expedite drug development through identifying 
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audiences that are most suitable for clinical trials. This includes patients 

presumed to be compliant and those not expected to have complications.

Prescriptive analytics enables the optimization of population health 

management through identification of appropriate intervention models for 

individuals from risk stratified populations—combining clinical, patient, 

and wider available health data.

Analytics is undergoing a further transformation, from prescriptive 

analytics through to contextual analytics. Contextual analytics considers 

wider data—such as environmental, location, and situational data—when 

prescribing the best course of action.

 Use Case: From Digital To Pharmacology

Different treatment pathways work differently for different people. 

Collected on a large scale, physicians can prescribe therapies based on the 

latest evidence-based and predictive and prescriptive analyses of patient 

populations. Incorporating digital education as well as pharmacological 

therapies, delivery of treatments through such facilities democratizes 

healthcare access by ensuring the most precise treatment is always 

prescribed, alongside ensuring resources are focused where required.

 Reasoning
A system can determine conclusions with information available in a 

knowledge base using three main methods: deduction, induction, and 

abduction. Although a background in logic is not required, it is useful to 

understand the differences between the different reasoning approaches. 

Any data scientist should be familiar with these reasoning techniques.
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 Deduction
Deductive reasoning allows you to make statements that are necessitated 

by facts that you know. For example, you are given two facts:

 1. It rains every Saturday.

 2. Today is Saturday.

Deductive reasoning allows you to determine the true statement that it 

is going to rain today if today is Saturday.

In deductive reasoning, one infers a proposition q, which is logically 

sensical from a premise p. Most reporting systems and business 

intelligence software is deductive.

 Induction
Inductive reasoning enables you to make statements based on the 

evidence you have accumulated until now. However, the key point is that 

evidence is not the same as fact. Substantial evidence for something only 

suggests, however strongly, that some “thing” is a fact. Consequently, 

statements that are determined are only very likely to be true in an 

inductive approach, rather than absolute.

With inductive reasoning, one attempts to infer a proposition q, which 

follows from p, but which is not necessarily a logical consequence of p.

For example, if it has rained in Coventry, England, during December for 

a recorded history of over 50 years, you would have strong evidence (data) 

for the inductive statement that it will rain in the coming December in 

Coventry. However, this does not mean it is going to happen; it is not a fact.

Statistical learning is about inductive reasoning: looking at some data, 

scientifically guessing at a general hypothesis, and making statements or 

predictions on test data based on this premise.
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 Abduction
Abduction is an adaptation of inductive reasoning. Abductive reasoning 

attempts to use a hypothesis p to explain a proposition q. In abduction, 

reasoning flows in the opposite direction to deductive reasoning. The 

best hypothesis, that is, the one that most effectively explains the data, is 

inferred to be the most probably correct one.

A classic example is the following:

• (q) Observation: When I woke up, the grass outside my 

window was wet.

• (p) Knowledge base includes information: Rain can 

make the grass wet.

• Abductive inference: It probably rained at night.

There are often many up to infinite possible outcomes, so abductive 

reasoning is useful in determining how to prioritize explanations to 

investigate. Big datasets provide opportunities for induction and inference 

through machine learning.

 How Much Data Do I Need for My Project?
Although big data is defined by the fact it is stored in distributed systems, 

when it comes to creating machine learning algorithms, it’s about quality 

and not quantity. For instance, if you have over 1,000 data points for a 

patient, how are you to understand the most important attributes from 

what is noise? Further still, is it likely that you would get better outcomes 

from 5,000, 10,000, or 100,000 data points? This problem is best addressed 

through data science and is entirely dependent on the domain and the 

quality of your data samples.

The future of evidence-based medicine is the realization of  

data- driven, personalized healthcare. Data-driven healthcare occurs when 
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there is a synergetic partnership between healthcare providers, patients, 

and data obtained from all clinical documentation. This results in analytics 

that drives actionable insights in real time, allowing for an enhanced 

patient experience and streamlined clinical and administrative workflows.

 Challenges of Big Data
There are several challenges in the development of big data initiatives.

 Data Growth
By the very nature of big data, storage is a challenge. There is broad 

agreement that the size of the digital universe will double every 2 years, 

which equates to a fiftyfold growth from 2010 to 2020. Most big data is 

unstructured, meaning that it doesn’t reside in a traditional database 

schema. Documents, photos, audio, videos, and other unstructured data 

can be difficult to search, analyze, and retrieve. Hence, management of 

unstructured data is a growing challenge. Big data projects can evolve as 

quickly as the data used within them.

 Infrastructure
Big data consumes technical resources in the form of infrastructure, 

storage, bandwidth, databases, and so forth. The challenge is not technical 

so much as one of finding reliable vendors of services and support, and of 

getting the correct economic model of remuneration. A solution delivered 

from the cloud will have greater scalability, cost-effectiveness, and 

efficiency compared to an on-premises solution.
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 Expertise
Finding good quality expertise (or a deep stack expertise) in the 

disciplines of data analysis and data science is a challenge faced by many 

organizations. Compared to the amount of data generated, there are very 

few data scientists in proportion.

 Data Sources
A significant challenge with big data is the volume and velocity at which 

data is generated and delivered. Managing the plethora of incoming data 

sources is a task in itself.

 Quality of Data
Data quality is certainly not a new concern, but the ability to store each 

piece of data generated in real time compounds the problem. Common 

causes of dirty data must be addressed and include user input errors, 

duplicate data, and incorrect data linking. As well as maintaining and 

cleaning data, big data algorithms can also be used to help clean data.

 Security
There are significant risks in the security and privacy of patient data. With 

sensitive health data, there is rightly an increased sensitivity to security 

and privacy concerns. The tools used for analysis, storage, management, 

and utilization of data are from a variety of sources, which exposes 

the data to risk. Cybersecurity is a concern. Significant data breaches 

have occurred in the healthcare industry. In the United Kingdom, the 

Information Commissioner (ICO) fined the Brighton and Sussex University 

Hospitals NHS Trust[39] after it was found that the sensitive data of several 

thousand people were resident on hard drives placed up for auction on 
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eBay. To date, the most substantial healthcare breach recorded has been 

of American health insurance company Anthem.[40] The breach exposed 

the personal records, including home addresses and personal information, 

of over 70 million current and former members. Data loss, including data 

theft, is a genuine problem that is continuously tested to its limits.

Security challenges include authentication for every team and team 

member accessing datasets, restricting access based on user needs, 

recording data access histories, and meeting compliance regulations and 

ensuring data is encrypted to protect from snoopers and any malintent.

Security of medical devices poses a unique threat because of their 

technological diversity. Medical devices, from health applications on a 

smartphone to insulin pumps, are becoming increasingly networked, 

leaving unique openings for hackers.[41] This kind of activity is regarded 

as dangerous, although for those more technical, it is understood that this 

can be utilized for positive benefit. Insulin pumps and continuous glucose 

monitors have been “hacked” to function as an artificial pancreas by 

enthusiasts way before pharmaceutical company or digital companies had. 

However, the key concern is that, if exploited, similar device vulnerabilities 

could lead not only to data breaches but fatalities in people relying on 

medical devices. Today, the balance between disruption and progress is 

one of real-world experience.

Then there is the topic of third-party services and vendors. Most health 

devices and health apps offer API access. It’s useful to remember that 

external vendor services and APIs are only as good as the developers that 

have developed them.

 Resistance
Lack of understanding of value and outcomes from machine learning 

projects can leave internal stakeholder resistance. You can only manage 

a project efficiently if you can ascribe clear value to results and prioritize 
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clear explanations of outputs to stakeholders. Over and above inertia, once 

key patterns have been identified, organizations must be prepared to make 

necessary actions and implement changes to derive value from them. This 

is often a primary interia, so precise and jargon-free documentation and 

governance is useful for understanding the project and governance purposes.

 Policies and Governance
The vast amount of big data captured through wearable devices and 

sensors raises questions as to how data is collected, how data is treated, 

how data is analyzed, and how data should affect the policy-making 

process. Besides, data privacy and security are legal areas in a state of 

constant development and evolution.

 Fragmentation
Most organizational data is highly fragmented. Hospital teams have 

their patient data, as do physicians and tertiary care teams. This creates 

challenges at several levels: syntactic (i.e., defining common formats 

across teams, sites, and organizations), semantic (agreeing on common 

definitions), and political (determining and confirming ownership and 

responsibilities). This is before the patient’s own data, collected through 

phones, health apps, nutrition apps, and so forth.

 Lack of Data Strategy
To benefit from data science investments, organizations must have a 

coherent data strategy. It’s key to establish the need for the data and identify 

the right type and sources of data for use. What is the desired goal with the 

data and what are the objectives? It is important to establish the data needs, 

to save wasting resources and efforts collecting data that are of no use.
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 Visualization
To truly benefit from data science investments, stakeholders must 

understand the outputs of data analysis and exploration. Poor visualization 

of data is connected to lack of data strategy: if specific use cases and 

objectives are not determined, visualization of results from data can prove 

challenging due to a lack of clear direction.

 Timeliness of Analysis
Linked to proximity, the value of data may decrease over time. 

Applications such as fraud detection in banking require data to be 

delivered as close to real-time as possible to be effective.

 Ethics
Data ethics is emerging as a topic as datasets become big enough to raise 

practical rather than theoretical concerns about ethics. Patients are leaving 

a constant data trail through sensors, wearables, transactions, social 

media, and transportation. For instance, the genetic testing company 

23andMe can sell to individuals reports on their genetic risk for ten 

diseases, including Alzheimer’s disease and Parkinson’s disease. This leads 

to challenging conversations about what is and what is not appropriate, 

discussed more in Chapter 8.

 Data and Information Governance
Data is a precious asset to any business or organization; but in healthcare, 

data governance is paramount to ensure consistency, safety, and 

progression of any organization toward becoming data-driven and 

analytically driven. The need for data governance is driven primarily by 
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the requirement for accountability in a risk-averse industry. As the value 

of data is realized, data governance too is evolving to define the approach, 

management, and utilization of data in an organization. Processes and 

standards such as ISO (International Organization for Standardization) 

10027 and GDPR (General Data Protection Regulation) have been used to 

bring the entire data industry in line with best practice.

Data governance and information governance are often used 

interchangeably but do differ.

Governance of data refers to the practice of managing data assets 

throughout their life cycle to ensure that they meet standards of quality 

and integrity. The goal of data governance is to provide user trust in 

the data through optimal data validity and accountability. It sets the 

framework for creating high-quality data and using data in a secure, 

ethical, and consensual manner. Data governance in healthcare seeks to 

improve efficiency, create accountability, and establish a pool of data that 

providers and patients can use to make proper health decisions.

Often the best approach to data governance is to govern to the least 

extent necessary to achieve the most common good. In several cases, 

governance is being set for circumstances that don’t require governing yet.  

Organizations can waste tremendous amounts of time through 

management and decision-making, including constraints on data, which 

can hinder project development and direction. Healthcare organizations 

should be motivated by the acquisition of more data to learn—to gather 

information to manage risks better and improve outcomes.

Data governance is required to uphold a variety of criteria to return 

quality information.

 Data Stewardship
The steward is accountable for the data as defined and its appropriate 

use. The objective of this aspect of data governance is to assure quality 

regarding data accuracy; data accessibility; and data consistency, 
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completeness, and updating. This is typically the organization running 

the project. Further still, most organizations would have an appointed 

officer(s), responsible for accessing the data, with elevated privileges.

 Data Quality
Ensuring data quality is arguably the most important function of data 

governance besides security. Poor data quality has a detrimental impact 

on accuracy, particularly for learning projects. Governance should seek to 

enforce quality, accuracy, and timeliness of data.

 Data Security
Security of data is essential. First and foremost, data governance sets out 

how the data is protected, typically how it is encrypted, who has access to 

it, processes for handling data—including how the data may be  

used—and what is done in case of a breach. This is motivated by several 

drivers: regulatory requirements that demand action (such as GDPR 

taking place in Europe), the growing risk of cybersecurity, and the fact 

that perceptions of digital weakness can harm reputation and trust. This is 

demonstrated in how the number of web sites that operate with a secure 

https:// protocol has risen by 4,000% since 2012.[42] Patients expect their 

data to be secure.

 Data Availability
Fragmentation of data is one of the biggest problems healthcare 

organizations face. Ensuring stakeholders’, providers’, and patients’ data 

access is critical. Patients “own” their data; and as a result, access needs to 

be transparent, quick, and efficient for all. Data access governance may set 

permissions and authentication levels for user roles to systems.
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 Data Content
The data and information governance for a project may state the types of 

data collected, including health data; metadata; and location, profile, and 

behavior data. Data governance may also detail what the data is used for.

 Master Data Management (MDM)
As data transfer becomes a priority, the MDM acts as a master reference 

to ensure consistent use of data across organizations. The goal of MDM 

is to create a common point of reference that can be shared within an 

organization.

 Use Cases
In almost all cases, data governance policies will include use cases for data 

access and “what would happen if” scenarios. It is useful to have all team 

members required in action to be involved in dummy runs to ensure that 

data access or access requests are not met with periods of silence.

Use cases would include the set of processes that would take place in 

light of a request for data from a patient, request for deletion, ensuring 

appropriate roles were able to access the data, ensuring appropriate 

transactional logs were kept, and so forth.

Data governance provides several benefits over and above those that 

are internal, including the following:

• Protecting the interests of data  

stakeholders—particularly the data “giver”

• Standardizing procedures and processes for 

streamlined repetition and minimization of error
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• Reducing costs and improving effectiveness

• Greater transparency and accountability between data 

transfer parties

Information governance has a slightly different purpose. Information 

governance is the management and control of information. This 

information is formed through the use of data assets (Figure 2-7).  

A single data point, such as a blood glucose reading, without any 

additional context or metadata offers very little. However, a series of blood 

glucose readings over the past 3 months can show whether the patient has 

good or bad blood glucose control, for example, which can be a risk factor 

for comorbidities. It pays attention to personal and sensitive information 

linked to patients and employees.

In most organizations, data and information governance is 

consolidated; but it is useful to understand the distinction.

A resolute data governance program would involve a governing 

body or council, a defined set of procedures, and the way in which said 

procedures are upheld and verified.

Figure 2-7. Data vs. information—what’s the difference?
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As learning systems develop, information governance is becoming 

more critical. Digital health apps and integrated bio-human health devices 

will soon be able to predict and determine risk and time to disease as 

datasets grow infinitely large. Regardless of the question of accuracy, 

legislation on what can and can’t happen with this information is required.

 Deploying a Big Data Project
Getting started with any big data project involves three steps.

 1. Understand how the project will impact your 

organization

This involves identifying the business case; 

objectives (what is it I want to achieve?); current 

and required infrastructures; data sources; and 

quality, tools, and KPIs regarding measuring 

success. Identifying quantitative objectives is key 

to measure success and performance. Determining 

a measurable ROI to determine the success of 

the project is useful to demonstrate value to 

stakeholders. Identifying goals with members from 

technical, medical, and operational teams help to 

maintain clarity of focus and direction. Identify 

potential use cases.

 2. Find the skills and technology you need

Identification of the use cases for the project can 

help define the technology, infrastructure, and 

capabilities required for the project. Skills in Python 

and R (open source programming languages) are 

most likely going to be required, with analytics 
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skills also desired for data science. This can be 

outsourced, contracted in, or developed into  

full-time roles.

 3. Implement the project

Identify the data you wish to include and make a job 

of identifying data that will also be excluded from 

use cases. Identify the types of analyses required 

on the data to gather the desired output from the 

project. Explore the requirements necessary for 

collecting and preparing data into usable formats 

for algorithms; the governance required for holding 

and using the data; and how it will be presented to 

stakeholders and, most importantly, the end users. 

Architectural decisions such as database structures, 

platform providers, and type of models may be 

made at this point. It’s at this point you can consider 

the types of analytics applied to the data.

You may wish to consider phasing of the project and the gaps between 

current and future capabilities that require addressing.

Develop the project in a test environment and present results to users 

in a meaningful way.

 Big Data Tools
There are various open source and paid-for tools that can be used for big 

data collection and machine learning projects. The fundamentals begin 

with Hadoop and NoSQL (non-relational) databases.

Hadoop is synonymous with big data, and is a Java-based, open 

source software framework, or software ecosystem, for distributed 

storage of large datasets on computer clusters. Hadoop can process big 
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and complex datasets for insights and answers. Hadoop Distributed File 

System (HDFS)  is the storage system used by Hadoop that separates 

big data and distributes it across nodes within a cluster. This can also 

replicate data in a cluster, providing high availability. For those not 

wanting to delve into Java themselves, Microsoft Azure, Cloudera, Google 

Cloud Platform, and Amazon Web Services all provide big data hosting 

services powered by Hadoop.

MongoDB is a modern approach to databases that is useful for 

managing data that changes frequently, or data that is unstructured or 

semi-structured in nature. The architecture has better write performance, 

takes less storage space with compression, and reduces operational 

overhead. MongoDB is part of a growing movement known as NoSQL 

databases, which are used to store unstructured data with no particular 

schema. Rows can all have their own set of unique column values.  

NoSQL has been driven by the requirements to provide better 

performance in storing big data.

R is an open source software and programming language used for data 

mining and statistical analysis and graphical techniques.

Python is another popular open source programming language used in 

machine learning and data mining for data preprocessing, computing, and 

modeling.

 Conclusion
Big data and healthcare mean significant progress toward realizing a 

plethora of opportunities. This includes remote patient monitoring, 

precision medicine, preventing readmissions, and advancing disease 

understanding. From mundane tasks of data entry and record keeping  

to advanced and functional applications like observing and  

understanding people’s blood glucose patterns—data is becoming part  

of our day-to-day fabric.
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The potential for positive impact that big data-driven solutions can 

bring seemingly outweighs any negative sentiment. The growing trend 

toward centralization of medical data, toward the custodianship of 

the patient, is causing concern; yet as long as privacy and security are 

maintained, it is likely to facilitate the development of new treatments 

and contribute toward the evolution of medical understanding. The 

healthcare industry remains well within its infancy of leveraging big data 

for clinical and business use. The explosion of wearables has allowed 

the measurement of heart rate or steps to be taken during a day, which 

may seem like a relatively ordinary dataset; but the potential impact on 

preventative medicine and the general health of a population is immense.

Big data provides the opportunity for precision medicine through 

the delivery of data-driven, evidence-based medicine. The benefits 

are plentiful: first and foremost through the delivery of more precise 

treatments for patients. With this comes cost savings through fewer 

mistakes, fewer hospital admissions, decreased mortality, and improved 

patient satisfaction. This also saves money by optimizing the use of the 

physician and wider healthcare team’s time, as more time is spent with 

patients in need.
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CHAPTER 3

What Is Machine 
Learning?
The first Checkers program from machine learning pioneer Arthur Samuel 

debuted in 1956, demonstrating artificial “intelligence” capabilities.[43]  

Since then, not only has the application of AI grown, there is now a 

velocity, volume, and variety of data that has never been seen before. 

Samuel’s software ran on the IBM 701, a computer the size of a double 

bed. Data was typically discrete. Almost 70 years later, data is ubiquitous, 

and computers now more powerful such that 100 IBM 701s can fit into 

the palm of our hand. This has facilitated the subsets of machine learning 

and deep learning within AI (see Figure 3-1).
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We see and engage with “artificial” intelligence, whether developed by 

machine learning or otherwise, in our everyday lives: in ordering an Uber, 

ordering food, looking for an Airbnb, searching on eBay, asking Alexa a 

question, and in digital education programs. Pondering on the AI humans 

are able to develop is limited only by the human imagination. New and 

innovative devices are increasingly connected to the cloud and increasing 

the wealth of opportunities in healthcare. With a wealth of data at its helm 

as an industry, AI is shifting its focus onto the power of machine learning 

and deep learning, where machines can learn for themselves—and this is 

accelerating current- generation breakthroughs in the AI space. If Samuel’s 

Checkers program demonstrated simple AI, machine learning is best 

demonstrated through AlphaGo Zero, which learned to play checkers 

simply by playing games against itself, surpassed human level of play, and 

defeated the previous version of AlphaGo by 100 games to 0.

Figure 3-1. Components of AI
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Machine learning systems are not uncommon in healthcare. 

Researchers at Houston Methodist Research Institute in Texas 

have developed an agent that is enabling review and translation of 

mammograms 30 times faster than a human doctor and with 99% 

accuracy.[44] According to the American Cancer Society, 50% of the 12.1 

million mammograms performed annually yield false results, meaning 

that healthy women get told they have cancer.[45] The software, which 

can be understood as an autonomous entity, learned from millions of 

mammogram records, reducing the risk of false positives.

There are many books and resources on the field of AI and machine 

learning. Although a comprehensive and mathematically grounded 

discipline, this book aims to cover the topic for the discerned reader, 

without delving too deep into the semantics of linear algebra, probability, 

and statistics.

This chapter will cover many of the topics within machine learning, 

beginning with an introduction to the basics of AI and terminologies and 

then moving on to artificial neural networks, perceptrons, natural language 

processing, and expert systems. Algorithms are covered in Chapter 4.

 Basics
Before delving into the depths of AI and machine learning, it is useful  

to understand several key definitions. A brief guide to useful terminology  

is included in the following, with a more in-depth glossary at the end of 

this book.

 Agent
An agent is anything that can be seen as perceiving its environment 

through sensors and acting on them through effectors. This takes Russell 

and Norvig’s approach to agents. As a result, this includes robots, humans, 

and software programs. There are many different types of agents, which 
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can be classified into categories based on their characteristics. Artificial 

Intelligence: A Modern Approach (AIMA) is a comprehensive textbook 

on artificial intelligence written by AI experts Stuart J. Russell and Peter 

Norvig.[46]

How should the agent behave? Rational agents are agents that do 

the right thing. This can be represented by a mathematical measure, 

or evaluation of the agent’s performance, which the agent can seek to 

maximize.

An agent can be understood as a mapping between percept sequences 

and actions. For example, a medical diagnosis system may treat a patient 

in a hospital as its environment: perceiving symptoms, findings, and 

patient’s answers. It may then act on these through questions, tests, and 

treatments with the goal of having a healthy patient. The definition of an 

agent applies to a software program or algorithm.

 Autonomy
In AI, autonomy refers to the extent to which the agent’s behaviors are 

determined by its own experience. If there is no autonomy, all decisions 

are made from a static dataset or knowledge base. In a completely 

autonomous situation, an agent would make decisions at random. Agents 

have the explicit ability to become more autonomous over time. Software, 

just like humans, can learn from experiences over time. Systems can learn 

from experiences in their environment (at its most basal, “learning” from 

some new data) to become more autonomous in it.

 Interface
An interface agent is one that provides an interface to a complex system.
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 Performance
Performance is the measure used to evaluate the behavior of the agent 

in the environment. It answers the question, Does the agent do what it’s 

supposed to do in the environment?

 Goals
Goals refer to what the agent is trying to achieve. In the field of machine 

learning, the goal is not to be able to get the agent to “learn.” Instead, this 

refers to the overall goal or objective.

Goals can be broken down into smaller tasks. For example, to 

accomplish the goal of a Caesarean section, the tasks could be considered 

cutting open the abdomen, bringing the baby out, checking the baby is 

healthy, and stitching the abdomen back up again.

 Utility
Utility refers to the agent’s own, internal performance assessment—that 

is, the agent’s own measure of performance at any given state. This may 

differ from the performance of the agent. It is noteworthy that the utility 

function is not necessarily the same as the performance measure, although 

it can be. An agent may have no explicit utility function, whereas there 

is always some performance measure. A utility function is used to map a 

state to a real number, which describes the associated degree of happiness 

or progress toward a goal or objective. This allows rational decisions in 

cases where there are several paths to the same goal, allowing an agent to 

distinguish the paths better than others.
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 Knowledge
Knowledge is acquired by an agent through its sensors or knowledge 

about the environment. Knowledge can be used to decide how to act; if 

it is stored, it can be used to store previous knowledge states (or in other 

words, a history); and it can be used to determine how actions may affect 

the environment.

Machine learning is data-driven. Thus, the dawn of ubiquitous data 

and pervasive computing is fantastic for developing systems with real- 

world application.

 Environment
The environment is the state of the world for an agent. An environment has 

several characteristics, following Russell and Norvig’s lead.

• Accessibility

This refers to how much of the environment the agent has access to. In 

cases of missing information, agents may need to make informed guesses 

to act rationally.

• Determinism

Environments can be deterministic or nondeterministic. Deterministic 

environments are environments where the exact state of the world can 

be understood. In this instance, utility functions can understand their 

performance. In nondeterministic environments, the exact state of the 

world cannot be determined, which makes utility functions rely on making 

best-guess decisions.

• Episodes
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Episodic environments are those where the agent's current action 

choice does not rely on its past actions. Non-episodic environments 

require agents to plan for the effects of its current actions.

• Type of environment

Static environments are where the environment doesn’t change while 

an agent is making a decision. Dynamic environments can change during 

processing, so agents may need to feed back into the environment or 

anticipate changes between the time of input and output.

• Flow of data to environment

One critical aspect of agent design is how the data is received. In a 

chess game, for example, there are only a finite number of moves that the 

agent can select. This would be a discrete environment, as there are only so 

many moves that can be performed. On the other hand, on the operating 

table, for example, things can change at the last millisecond. Continuous 

data environments are environments in which data seems infinite or 

without end.

An intelligent agent is fundamentally one that can display 

characteristics such as learning, independence, adaptability, inference, 

and to a degree, ingenuity.

For this to occur, an agent must be able to determine sequences of 

actions autonomously through searching, planning, adapting to changes 

in its environment, and from feedback through its past experiences. Within 

machine learning, there are further terminologies.

 Training Data
Training data is the data that will be used by the learning algorithm to 

learn possible hypotheses. An example is a sample of x including its output 

from the target function.
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 Target Function
This is the mapping function f from x to f(x).

 Hypothesis
This is an approximation of f.

 Learner
The learner is the learning algorithm or process that creates the classifier.

 Hypothesis
A hypothesis is the possible approximation of f that the learning algorithm 

can create.

 Validation
Validation includes methods used within machine learning development 

that provide a method of evaluation of model performance.

 Dataset
A dataset is a collection of examples.

 Feature
A feature is a data attribute and its value. As an example, skin color is 

brown is a feature where skin color is the attribute and brown is the value.
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 Feature Selection
This is the process of choosing the features required to explain the outputs 

of a statistical model while excluding irrelevant features.

 What Is Machine Learning?
In 1959, Checkers’ creator Arthur Samuel defined machine learning as 

a “field of study that gives computers the ability to learn without being 

explicitly programmed”.[47]

Machine learning was born from pattern recognition and the theory 

that computers can learn without being programmed to perform specific 

tasks—that is, systems that learn without being explicitly programmed. As 

a result, learning is driven by data—with intelligence acquired through the 

ability to make effective decisions based on the nature of the learning signal 

or feedback. The utility of these decisions is evaluated against the goal.

Machine learning focuses on the development of algorithms that 

adapt to the presentation of new data and discovery. Machine learning 

exemplifies principles of data mining but is also able to infer correlations 

and learn from them to apply to new algorithms. The goal is to mimic 

the ability to learn in a human, through experience, and achieving the 

assigned task without, or with minimal, external (human) assistance.

Just as with learning in humans, machine learning is composed of 

many approaches. At its most basic, things are memorized. Second, we 

learn from extracting information (through reading, listening, learning 

new things). And third, we learn from example.

For example, if we were being taught square numbers; and if students 

were shown a set of numbers Y = {1, 4, 9, 16, . . .} and taught that Y = n*n; 

they would typically understand the notion of square numbers without 

being explicitly taught every square number.
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 How Is Machine Learning Different 
from Traditional Software Engineering?
Traditional software engineering and machine learning share a common 

objective of solving a problem or set of problems. The approach to 

problem-solving is what distinguishes the two paradigms.

Traditional software engineering or programming refers to the task of 

computerizing or automating a task such that a function or program, given 

an input, provides an output. In other words, writing a function f, such 

that given input x, output y = f(x). This is done with logic, typically if-else 

statements, while loops and Boolean operators.

Machine learning differs from conventional programming in that 

rather than providing instructions about the function f, the computer 

is provided input x and output y and expected to determine or predict 

function f (see Figure 3-2). Whereas traditional programs have been 

written by humans to solve a problem, machine learning programs 

learn through reasoning to solve a problem from examples, rules, and 

information. Many classifiers in machine learning assist with prediction. 

Machine learning programs can also learn to generalize and help with 

issues of uncertainty due to the use of statistics and probability-driven 

techniques. Models can learn from previous computations or experience 

to produce reliable, repeatable decisions and results.
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The availability of data, information on the Internet and leaps in the 

amount of digital data being produced, stored, and made accessible for 

analysis is enabling engineers to realize machines that can learn what we 

prefer and personalize to our requirements. Machine learning can be seen in 

web search rankings, drug design, personalization of preferences and social 

network feeds, web page design, self-driving cars, and virtual assistants.

 Machine Learning Basics
Tasks for machine learning algorithms are broadly categorized as the 

following (see Figure 3-3):

• Supervised learning (also known as inductive learning)

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning

Figure 3-2. How machine learning works
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 Supervised Learning
In supervised learning, algorithms are presented with example inputs and 

the subsequently desired outputs in the form of training data, with the goal 

to learn general rules that map inputs to outputs (see Figure 3-4). Input 

data is called training data and has a known output (result) associated with 

it. The training data guides the development of the algorithm. A model is 

created through a training process in which the model makes predictions 

and is corrected when predictions are incorrect.

Figure 3-3. Methods of learning

Figure 3-4. Supervised learning: how it works
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Training continues until the model achieves the desired level of 

accuracy on the training data. Supervised algorithms include logistic 

regression. Supervised machine learning algorithms can apply what 

has been learned in the past to new data using labeled data examples 

to predict future events. The learning algorithm can also compare the 

output with the correct output to find any errors and modify the model 

accordingly.

Supervised learning problems can be employed in the following forms:

• Classification: To predict the outcome based on a 

training dataset where the output variable is in the 

form of distinct categories. Models are built through 

inputting training data in the form of prelabeled data. 

Classification techniques define decision boundaries 

and include support vector machines, naïve Bayes, 

Gaussian Bayes, k-nearest neighbors (KNN), and logistic 

regression. An example of classification is the label (or in 

real-world application, diagnosis) of someone as sick or 

unhealthy based on a set of symptoms.

• Regression: Very similar to classification. The only 

difference between classification and regression is that 

regression is the outcome of a given sample where the 

output variable is in the form of real values (i.e., the 

temperature as a value, rather than a classification of hot 

or cold). Examples include height, body temperature, and 

weight. Linear regression, polynomial regression, support 

vector machine (SVR), ensembles, decision trees, and 

neural networks are examples of regression models.

• Forecasting: The method of making predictions  

based on past and present data. This is also known as 

time- series forecasting.
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• An ensemble is a type of supervised learning that 

combines multiple, different, machine learning 

models to predict an outcome on a new sample. In an 

ensemble, models become features.

 Unsupervised Learning

When people reference systems that can learn for themselves, they 

are actually referencing unsupervised learning (see Figure 3-5). In 

unsupervised learning, the learning algorithm doesn’t receive labels for 

data, leaving the algorithm to find structure from the input. As data is 

unlabeled, there is no evaluation of the accuracy of the structure that is 

output by the algorithm. Data may be missing both classifications and 

labels. As a result, the model is developed through interpretation: through 

finding hidden structures and inferences in the input data. This may be 

through the extraction of rules, reducing data redundancy, or as the result 

of organizing data.

Figure 3-5. Unsupervised learning: how it works

This includes clustering, dimensionality reduction, and association 

rule learning. The algorithm may never find the right output but instead 

models the underlying structure of the data.
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There are three types of unsupervised learning problems:

• Association: Discovering the probability of the  

co- occurrence of items in a collection. This is used 

extensively in marketing as well as healthcare. For 

instance, this would be the percentage likelihood of 

developing any form of cancer if diagnosed with poorly 

controlled type 2 diabetes. Association is similar to 

classification; however, any attribute can be predicted 

in association, whereas classification is binary.

• Clustering: Grouping items such that items within the 

same cluster are more like each other than to items 

from another cluster.

• Dimensionality reduction: Dimensionality reduction 

can be achieved through feature selection and 

feature extraction. Dimensionality reduction may 

mathematically re-represent, or transform data.

Feature extraction performs data transformation from a high- 

dimensional to a low-dimensional space. This can involve reducing the 

variables of a dataset while maintaining data integrity and ensuring that 

the most important information is represented.

Feature extraction methods can be used for dimensionality reduction. 

Typically, a new set of features would be created from the original feature 

set. An example would be combining all of a patient’s clinical test results 

into a health risk scoring from the results that are demonstrated to affect 

mortality. Reducing the number of dimensions allows easier visualization, 

particularly in two or three dimensions, as well as reducing time and space 

required for storage.
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Algorithms include Apriori algorithm, FP-growth (also known as 

frequent pattern growth), Hidden Markov Model, Principal component 

analysis (PCA), singular value decomposition (SVD), k-Means, neural 

networks, and deep learning. Deep learning utilizes deep neural network 

architectures, which are types of machine learning algorithms.

 Semi-supervised

Semi-supervised learning is a hybrid where there is a mixture of labeled 

and unlabeled data in the input. Although there may be a desired 

outcome, the model also learns structures to organize data and make 

predictions. Example problems are classification and regression.

 Reinforcement Learning

This is where systems interact with a dynamic environment in which an 

agent must perform a specific goal. Reinforcement learning acts as an 

intersection between machine learning, behavioral psychology, ethics, and 

information theory.

The algorithm is provided feedback concerning rewards and 

punishments as it navigates the problem. Reinforcement learning allows 

the agent to decide the next best action based on its current state and by 

learning behaviors that will maximize the reward. Optimal actions (or an 

optimal policy) are typically learned through trial and error and feedback. 

This allows the algorithm to determine ideal behaviors within context.

Reinforcement learning is typically used in robotics: for instance, 

a robotic hoover that learns to avoid collisions by receiving negative 

feedback through bumping into tables, chairs, and so forth—although 

today, this also involves computer vision techniques. Reinforcement 

learning differs from standard supervised learning in that correct examples 

are never presented, nor are suboptimal decisions explicitly corrected. The 

focus is on performance in the real world.
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Similar to how humans learn, reinforcement learning assumes rational 

behavior regarding learning from one’s experience, and as such is assisting 

in understanding how humans learn from experience to make good 

decisions (see Figure 3-6).

DeepMind, for example, exposed their AlphaGo agent to master the 

ancient Chinese game of Go through showing “AlphaGo a large number 

of strong amateur games to help it develop its own understanding of what 

reasonable human play looks like. Then we had it play against different 

versions of itself thousands of times, each time learning from its mistakes 

and incrementally improving until it became immensely strong.”[48]

Reinforcement learning is used in autonomous vehicles. In the real 

world, the agent requires consideration of aspects of the environment 

including current speed, road obstacles, surrounding traffic, road 

information, and operator controls. The agent learns to act in a way 

(or develop a policy) that is appropriate for the specific state of the 

Figure 3-6. Reinforcement learning: how it works
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environment. This leads to new ethical dilemmas posed by AI and 

machine learning for agents with reward-driven programming.

 Data Mining

Data mining, also known as knowledge discovery in databases, is defined 

as the process of exploring data to extract novel information (including 

patterns and relationships) using sophisticated algorithms. This can be 

applied to every aspect of life and industry and enables the following:

• Pattern predictions based on trends and behaviors

• Prediction based on probable outcomes

• Analysis of large datasets (particularly unstructured)

• Clustering through identification of facts previously 

unknown

Data mining uses the power of machine learning, statistics, and 

database techniques, and is at the heart of analytics efforts (see Figure 3-7). 

Data mining typically uses large amounts of data and can also give simpler, 

descriptive analytics. For instance, in healthcare, data mining applications 

can be used to identify conditions or medical procedures that are often 

seen together. Data mining also allows forecasting, through identifying 

relationships within the data. This can help insurance companies detect 

risky customer behavior patterns.
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Machine learning can be used for data mining. Data mining will inform 

decisions such as the kind of learning models best suited for solving the 

problem at hand. However, data mining also encompasses techniques 

besides those encapsulated within machine learning. In data mining, 

the task is of unknown knowledge discovery, whereas machine learning 

performance is evaluated with respect to reproducing known knowledge.

For instance, if you had a dataset of a patient’s blood pressures, you 

can perform anomaly detection, which is considered a data mining task to 

identify previously unknown outliers. The task may make use of machine 

learning techniques, perhaps a k-means algorithm for cluster analysis, to 

identify the anomalous data and assist the algorithm’s learning.

Data mining is not the same as natural language processing (NLP). NLP 

may be a technique used in data mining to help an agent understand or 

“read” text. Data mining algorithms include C4.5, k-means, Support vector 

machines, Apriori, EM (expectation–maximization), PageRank, AdaBoost, 

kNN, Naive Bayes and CART (Classification and Regression Trees).

Figure 3-7. Data mining and its wider synergies
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 Parametric and Nonparametric Algorithms

Algorithms may be parametric or nonparametric in form.

Algorithms that can be simplified to a known, finite form are labeled 

parametric, whereas nonparametric algorithms learn functional form 

from the training data. In other words, with nonparametric algorithms, 

the complexity of the model grows with the amount of training data. With 

parametric models, there is a fixed structure or set of parameters. As a 

result, parametric models are faster than nonparametric models. However, 

nonparametric models can provide better accuracy if they are supplied 

enough training resources in terms of training data and time  

(see Figure 3- 8).

Figure 3-8. Parametric vs. nonparametric algorithms

Linear models such as linear regression and logistic regression are 

parametric, whereas K-nearest neighbor, neural networks, and decision 

trees are nonparametric.
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 How Machine Learning Algorithms Work
Supervised learning is the computerized task of inferring a function from 

labeled training data.

Y = f(x),

which can be understood as

Output = function(Input).

Inputs and outputs can be referred to as variables and are typically 

vector in format: f refers to the function, which you are trying to infer from 

the Input.

Take the example of a patient who is to be prescribed a particular 

treatment. In real life, the process may include the patient looking at 

research describing qualities about the medication or treatment he or she 

was recommended. For example, if he or she were to see that the research 

mostly consists of words like “good,” “great,” “safe,” and so forth, then we 

would conclude from the sentiment that the treatment is a good treatment, 

and we can feel confident in accepting it. Whereas if words like “bad,” “not 

good quality,” and “unsafe” were to appear regularly, then we conclude 

that it is probably better to look for another treatment. The research 

helps us perform an action based on the pattern of words that exist in the 

treatment research.

Machine learning attempts to understand this human decision- making 

process through algorithms. It focuses on the development of algorithms (or 

programs) that can access data and use it to learn for themselves. Machine 

learning is very good for classification and prediction tasks. Machine 

learning is most commonly used for predictive analytics—learning the 

mapping of Y = f(X) to make predictions of Y for new X.
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Practical examples of machine learning are the following:

• Fraud detection x is the property of the transaction f(x) 

is whether a transaction is fraudulent

• Disease diagnosis x is the properties of the patient f(x) 

is whether a patient has disease

• Speech recognition X are the properties of a speech 

input f(x) is the response given to the instruction 

contained within the speech input

The process of machine learning begins with input data provided as 

examples, direct experience, or instructions—to identify patterns within 

the data and make better decisions in the future based on the data that was 

provided. The aim is to enable the program to learn automatically without 

human intervention or assistance and adjust rational actions accordingly.

 How to Perform Machine Learning
Performing machine learning is like typical algorithm methodologies. It 

involves the following:

 1. Specifying the problem as a learning task(s)

 2. Preparing the data

 3. Choosing the learning method

 4. Applying the learning method

 5. Assessing the method and results

 6. Optimization

 7. Reporting the results
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 Specifying the Problem
The first thing when it comes to machine learning is specifying the 

problem. This involves understanding what the problem is, how we can 

solve the problem, and how it can be evaluated. It is useful to understand 

why you want to solve the problem, especially if you are creating a budget 

case for a machine learning project. This includes evaluating the following:

• Why is it important?

• What do you hope to achieve? What are your best 

hopes?

• What are the inputs and outputs for the task at hand?

• Is this data available?

• How will the results be beneficial?

• Is this exploratory?

• What are the KPIs (key performance indicators); how is 

performance measured?

• What does success look like?

• Do we have the talent on hand to attempt the task?

• What are the limitations to the task at hand? This could 

include time, finance, skillsets, experience, domain 

knowledge, data availability, and so forth.

To solve the problem, data available to you will include examples and 

background information.
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 Examples

Categorization is a skill that can be learned through examples. It can 

be used for predictive tasks such as disease risk or resource demand 

prediction. Certain problems present themselves in traditional healthcare 

settings, such as data from medical appointments and certain diagnoses 

having complementary handwritten notes. Bad examples can help to 

introduce error. For classification, examples are typically provided in the 

form of positives and negatives.

 Background Information

This refers to the knowledge and axioms associated with a machine 

learning problem. This may include metadata, attributes, or relationships 

between concepts. For example, in a hypertension prediction tool, 

the diagnosis of type 2 diabetes would be related to the likelihood of 

hypertension based on medical evidence and data. This is information that 

is utilized in the concepts learned to achieve categorizations.

 Errors in the Data

Be mindful of the fact that errors from the real world can creep in: 

for example, from incorrect classifications, missing data, incorrect 

background information, and repeated data. Errors could creep in, for 

example, from the digitalization of paper documents and the machine- 

reading of written text. It is important to remember the model is only as 

good as the data it is provided. It is worth spending time verifying the data 

to ensure that human errors are minimized.

Chapter 3  What Is MaChIne LearnIng?



99

 Preparing the Data
Machine learning algorithms learn from the data they are trained on. It is 

mission critical to provide the model with valid, correct data to learn. Data 

must be prepared in a usable format. In a real-world scenario, this would 

typically involve understanding the data that would be used to model 

the problem and exporting the data. The data must then be processed to 

ensure correct formatting, removal of erroneous data, and the fixing of any 

missing data. The dataset size may be more than required, and so dataset 

sampling may also be required.

Every machine learning candidate will acquire skills in data 

preparation. Data preprocessing is essential to have tidy, valid data. Tidy, 

valid data is key to having robust, veracious outcomes.

First, we need to select the data. When first extracted, the data is raw. 

You may need to tidy your data. You may need to clean your data, which 

involves removing or fixing bad data.

 Attribute Selection

Attribute selection is also called variable selection or feature selection. 

It is essentially filtering—and refers to the selection of a subset of the 

original example set that is most relevant in the predictive modeling at 

hand. Feature selection is different from dimensionality reduction in that 

dimensionality reduction methods create new combinations of attributes. 

Feature selection includes and excludes attributes rather than creating 

new ones.

This is where domain knowledge is advantageous. Understanding  

the context in which the problem fits enables you to better determine a 

feature set.
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 Transforming Data

In most industries, but particularly in the healthcare setting, many 

instances require anonymized data, and thus some features may be 

completely removed from the dataset. Formatting may need to be 

changed; for example, you may need to export your data to something that 

is a flat file rather than a traditional relational database. You may only want 

to work with a subset of your sample data.

Digitalized text, such as handwriting, may have errors. Check your 

datasets for errors, biases, and inconsistencies. This is a very common 

problem.

Data may also need to be transformed. This is typically guided by the 

algorithm you are using and the data available. For instance, if a machine 

learning algorithm was taking the input of a diagnosis of type 2 diabetes as 

an integer “[0 for false]” and “[1 for diagnosed with type 2 diabetes],” but 

the medical notes read specified "type 2 diabetes” or “no type 2 diabetes,” 

the data would need to transform from text to integers to be machine 

readable. Scaling may also be used—for example, converting metric to 

imperial units.

Transformations can include the following.

 Aggregation

This refers to attributes that can be aggregated into an individual attribute. 

For example, a log of particular patient attendance to health education 

could be aggregated into a count of the total number of attendances rather 

than representing each attendance separately.

 Decomposition

This refers to partitioning attributes such that they may become more 

useful to a machine learning technique. For example, a patient’s records 

may have their ethnicity listed as Asian. However, it may be better to know 
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the country of birth and primary language of the patient to more accurately 

predict criteria such as type 2 diabetes risk.

 Scaling

Data can contain attributes with varying quantities. For example, weight 

in kilograms, height in centimeters, and clinical markers may use different 

scales completely.

Tidy data is the result of data preprocessing including spot checks, 

formatting, and transformations.

Machine learning can only be as good as the data you use to train 

it. If the data is biased (i.e., not representative), the learning will be 

biased. At the same time as you are exploring datasets, be careful to avoid 

introducing human error. This is typically satisfied through ensuring good 

version control.

 Weightings

Weight refers to the priority or influence of a particular feature. Typically, 

positive weightings would increase the prediction value, whereas negative 

weights would reduce the prediction value.

 How Much Data Do I Need?

Sadly, there is no definitive answer to this question—it depends. This is 

something that you explore through training your model and deploying 

it in the real world. Several factors can affect the “learning curve.” 

These include the complexity of the problem and the complexity of the 

algorithm. This, in turn, affects the amount of data required. Whether the 

model can make outputs that have veracity in the real world will depend 

on the sophistication of the algorithm and quality of data provided.
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Assess the availability and usefulness of more data. In a healthcare 

setting, randomized controlled trials on medications rarely assess more 

than 1,000 patients in any given setting. In a surgery setting, access to 

bigger data is likely but may not be required for training a model.

Nonlinear, nonparametric algorithms require more data to become 

better as to their accuracy. These are typically the more powerful machine 

learning methods. However, due to the validity of the data affecting both 

bias and variance, it’s key to train and validate the model robustly on as 

much data as efficiently possible.

 Choosing the Learning Method
The standard question any newcomer to machine learning has is “which 

algorithm should I use?” The algorithm of choice depends on several 

factors including the size, quality, and nature of data; the task deadline; 

and available resources and motivation for using the data. The learning 

technique is also referred to as the “representation of the solution,” as each 

machine learning approach represents data differently.

It is almost impossible to predict which approach will best perform on 

the data. That isn’t to say that it will perform well in the real world! Still, 

there are some general algorithms that can be used for certain problems, 

which are highlighted in Chapter 4.

NO FREE LUNCH

the “no Free Lunch” theorem in machine learning states that there is no one 

algorithm that works best for every problem. this is particularly relevant for 

supervised learning, as there are many factors that affect the performance of 

an algorithm.
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 Applying the Learning Methods
Machine learning tasks are typically conducted in a variety of 

programming languages: predominantly R, Python, Matlab, and SQL. Java 

and C are also commonly used.

• R is typically used for statistical analysis. It allows you to 

understand and explore data using statistical methods 

and graphs and contains an extensive range of machine 

learning algorithms.

• Python is a language well suited to machine learning. 

Extensions such as NumPy and SciPy are particularly 

useful for machine learning and data analysis.

• Matlab is the language many university students begin 

with. It is useful for fast prototyping, as it contains a 

large machine learning repository.

• SQL is a language used for managing data held in a 

traditional database management system.

 Should I Code My Machine Learning Algorithm 
from Scratch?

Several decisions need to be made from a resource and value perspective 

that affect the approach. A proof of concept project may be short of 

time, whereas a highly specific and complex task will contain a blend of 

approaches.

It is entirely possible to run a machine learning algorithm through 

implementing the ready-made algorithms provided by learning libraries 

such as scikit-learn, SciPy, Pandas, Matplotlib, TensorFlow, Keras,  

and so forth.
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This has been the traditional approach to machine learning: 

establishing a data science team that includes members experienced in 

languages such as Python and R. Members with experience in machine 

learning will typically be more impactful than those who are beginners 

to machine learning concepts. Engineers develop an understanding 

of the appropriate machine learning techniques to employ given 

certain problems through experience. This experience can prove vital 

in avoiding wasted time, resources, and exploration. Engineers with 

fundamentals in computer science will typically be familiar with many 

of the concepts present in machine learning. Choosing a programming 

language can influence the APIs and standard libraries you can use in 

your implementation. Enthusiasts may want to avoid using ready-made 

algorithms and coding the implementations themselves to gain greater 

knowledge of the mathematics, statistics, and logic involved.

In many instances where time is constrained, time for engineering 

enthusiasm is limited. As a result, cloud-based services such as Google 

AI, Microsoft Azure, IBM Watson, and a host of other providers allows the 

provider to take care of the algorithm; and many provide visual interfaces 

that enable the user to attempt particular machine learning techniques 

on the data uploaded. Cloud-based vendors offering data mining and 

machine learning applications are growing and available at a low cost. One 

of the benefits of using such vendors is the ability to try more than one type 

of model for an experiment and compare the results, allowing you to find 

the best solution for your problem task.

For those with more traditional programming experience, almost all 

offer API (or web service) creation facilities, allowing you to create an 

interface to engage with the hosted model. All that is required to integrate 

with APIs is an efficient traditional programmer or web developer.

As the world adopts open source, consider browsing for 

implementations that already exist through GitHub, Reddit, and other 

machine learning forums.
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API stands for application programming interface. APIs enable 

communication between software components, and in particular, can be 

used to interface between cloud-based machine learning providers and 

in-house development teams. There are many public APIs that can be used 

to assist in your machine learning tasks.

Embedding machine learning APIs should be approached with 

diligence and discretion. In an increasingly open source environment, as 

well as good documentation and functionality, ensure there are visible 

displays of popularity and robustness such as GitHub status, search engine 

popularity, and conversations.

 Training and Test Data

A test set and training set is selected from the prepared data. The algorithm 

is trained on the training dataset and evaluated against the test dataset.

In many cases, it is a case of trialing several machine learning methods. 

It is useful to understand two terms when it comes to machine learning 

modeling.

• Signal: the true underlying pattern in a dataset

• Noise: random or irrelevant patterns in a dataset

Some machine learning techniques may return one solution, whereas 

others may produce several. It is often a case of gathering their outputs 

(also referred to as hypotheses, or learned models) and evaluating their 

outputs.

The assessment of hypotheses is conducted through evaluating the 

predictive accuracy, comprehensibility, or utility. In most cases, Occam’s 

razor is used, where the simplest solution is chosen if all else is equal.

• Predictive accuracy refers to the accuracy at which the 

agent performs the task of classification.
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• Comprehensibility refers to how well we as humans 

can understand the output. For example, two Facebook 

bots recently began talking to each other in a language 

of their own.[49]

• Utility refers to the problem-specific measure of worth. For 

example, in drug synthesis, a combination of compounds 

that are unsafe for humans may be the best combination. 

However, this may not have the greatest accuracy. Equally, 

this may override accuracy and comprehensibility.

After the assessment is complete, a candidate hypothesis is chosen.

There are various ways to partition data into training and test datasets 

to train the machine learning model.

 Hold-Back Method

The hold-back method is a simple training method that can be employed 

that involves holding a proportion of the data to test on, leaving the 

remaining data for training and validating the model. Testing will typically 

give an indicator of the model’s effectiveness or accuracy.

 n-fold Cross-Validation

The n-fold cross-validation involves splitting the dataset into equally sized 

groups of instances (or folds). The model is then trained on all but one fold 

and tested on the final, left-out fold. This process is repeated, and each fold 

is left out for one iteration.

The number of folds can vary based on the size of the dataset. Common 

folds include three, five, seven, and ten folds. The aim is to balance 

between the size and representation of data in the training and test 

datasets. It enables the model to be tested n times on different datasets. 

This enables us to make the most out of the data, training n times on it.
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Some machine learning texts may refer to cross-validation as the cross- 

validation stage of the machine learning process. This is because machine 

learning engineers often use this approach to reduce the likelihood of 

overfitting.

 Monte-Carlo Cross-Validation

Monte-Carlo cross-validation is similar to n-fold cross-validation. It 

involves randomly splitting the dataset into training and test data. The 

model is tuned to the training data, and predictive accuracy is evaluated 

using the test data. Results are then averaged over the splits.

 Try Many Algorithms

Try a number of techniques that are relevant to your problem. This 

allows you to compare and choose the solution judged on accuracy, 

comprehensibility, and utility. Machine learning software typically 

supports multiple algorithms. Find the best algorithm for the job by trying 

as many as feasible.

 Assessing the Method and Results
The performance of machine learning tasks varies on the representation 

of data given. For example, a patient record analyzed by an AI system does 

not examine the patient directly. Instead, data is fed into a system, with 

each piece of information relating to the representation of the patient 

known as a feature. It is not necessary to require complete feature sets as 

part of representations to have highly confident outputs.

The goal of a machine learning algorithm is to generalize well, neither 

underfitting not overfitting. Generalization refers to the model performing 

with maximum accuracy on instances not seen during training.
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 Algorithm Accuracy Evaluation

Many supervised learning problems have binary classifications, where 

the problem is to learn a way of classifying unseen data into one of two 

categories. These are known as positive and negative categories. A false 

positive is received if the output from a binary classification agent that is 

given new data should have been categorized as negative but was classified 

as positive. A false negative is when an agent categorizes new data as 

negative but is incorrect.

In many medical settings, a false positive is not as bad as having a false 

negative. For example, false positives in this instance could include the 

diagnosis of illness for a patient based on a set of particular symptoms. It 

is evidently better to be told that you have a condition and not have it in 

reality, rather than being told you do not have a condition, only to be told 

that in fact, you do. A false positive would mean that someone was not 

diagnosed, which is perhaps more concerning.

A simple way of measuring predictive accuracy of a particular 

hypothesis over a test dataset is to calculate the number of correctly 

identified outcomes (both positive and negative). For example, if a heart 

disease tool learned a hypothesis and was given 250 new candidates to 

classify as having heart disease, and correctly classified 133 of 150 positives 

and 98 of 100 negatives, it would have an accuracy of

(133 + 98)/250 = 92.4%

This would be a 92 out of 100 chance of correctly categorizing an 

unseen example.

Generalization is measured by accuracy. Both under- and overfitting 

cause poor model performance and are detrimental to accuracy. If a 

model that was classifying with 92% accuracy in testing but only 30% on 

unseen data, we would say that the model doesn’t generalize well from 

training to unseen data.
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This is overfitting. Overfitting is when a model fits the training data 

too well. It memorizes answers rather than learning concepts from them. 

In this case, the model cannot distinguish signal from noise and learns 

the noise present in the data. As a result, the model does not understand 

the actual patterns, or signals, in the data. As such, the model does not 

apply to new data and is determinantal to the model’s ability to generalize. 

Decision trees are examples of algorithms that can overfit training data. 

This can be improved through pruning. In many cases, it’s a case of 

keeping things simple.

If a model performs better on training datasets than on unseen 

test sets, then the model is likely to be overfitting. Cross-validation is a 

technique to employ to measure against overfitting. Further still, training 

with more data may help algorithms infer hypotheses better.

The concept of “more data gives better results” is misguiding. In many 

cases, more data may help. However, more data does not imply good data. 

If data with noise were to be added, it wouldn’t help reduce overfitting. 

Hence, this is why it’s paramount to ensure data is clean and appropriate.

Data leakage occurs when data you are using to train your machine 

learning model has the information you are trying to predict in it. This 

leads to poor generalization and contributes to overfitting. Data leakage 

can occur from test data leaking into training data or additional features. 

A trivial example of data leakage would be a model that uses the response 

variable itself as a predictor, thus concluding, for example, that “a patient 

with type 2 diabetes has type 2 diabetes.”

If the performance of your machine learning algorithm is too good to 

be true, data leakage may be the reason it is. An n-fold cross-validation can 

help to reduce data leakage.

Underfitting is simple to detect, as it will have poor performance. It 

refers to a model that cannot model the training data or generalize to new 

data. Typically, this would be represented by simple models that have too 

few features. Results would tend to show bias over variance (i.e., wrong 

outcomes).
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 Bias and Variance

Supervised machine learning aims to understand the signal from the 

dataset while ignoring the noise. There is a machine learning dilemma of 

minimizing the two sources of prediction error that prevent supervised 

learning algorithms from generalizing beyond their training set. There is 

a trade-off between a model’s ability to minimize bias and variance (also 

known as the bias-variance trade-off).

 Bias

Bias refers to the error the model has from learning from erroneous 

data. Although this sounds strange, datasets may present randomly. Bias 

measures how far off, in general, these models’ predictions are from the 

actual correct value, or true signal.

• Low bias: Better understanding of true signal from a 

dataset

• High bias: Worse understanding of true signal from a 

dataset

High bias can often indicate that a better machine learning technique 

is available.

 Variance

This refers to error from sensitivity to fluctuations in the training set.

• Low variance algorithms output similar models based 

on the dataset.

• High variance algorithms output sufficiently different 

models based on the dataset.
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Bias and variance can best be illustrated using a dartboard analogy 

(see Figure 3-9). Take a dartboard where the bull’s-eye of the dartboard 

represents a model that perfectly predicts correct values. As you move 

further away from the bullseye, the predictions become worse. If each 

new model was represented by a new dart, each throw represents a 

realization of the model given the variability in the training data. With a 

good distribution of data for training, models can predict well. Data with 

anomalies and redundancies will result in poor predictions. This can be 

visualized on a dartboard.

Figure 3-9. Bias and variance illustrated

The trade-off engineers must make with machine learning algorithms 

is that an algorithm with low bias must be flexible to enable it to fit the 

data well. However, if there is too much flexibility, each dataset will be 
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interpreted differently and have high variance. There are several ways to 

reduce algorithm complexity, which are discussed in Chapter 4.

Many supervised learning toolkits provide methods to control the  

bias–variance tradeoff either automatically or by providing a parameter 

that can be adjusted.

Low-variance algorithms tend to have reduced complexity when 

compared to low-bias algorithms. Low-variance algorithms have a simple 

or rigid structure that results in models that are consistent but inaccurate 

on average. This includes algorithms like regression, naïve Bayes, and so 

forth.

Low-bias algorithms tend to be more complex with a more flexible 

structure. As a result, they are accurate on average; however, they can be 

inconsistent. This includes nonparametric algorithms such as decision 

trees and k-nearest neighbor.

The key in your project is to find a balance between bias and variance 

that minimizes total error (see Figure 3-10).

Total Error = Bias^2 + Variance + Irreducible Error

Figure 3-10. Finding optimal algorithm balance
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The irreducible error refers to error regardless of the model or dataset 

that is used. This is the noise that comes from the training data. It is a 

constant, as real-world data always has some degree of noise.

 Performance Measures

Examples of methods for evaluating algorithms include accuracy, 

prediction and recall, squared error, likelihood, posterior probability, cost, 

and entropy k-L divergence.

 Optimization
Just because a model performs well doesn’t mean it is the best and only 

model. The key is to get the maximum veracity from your results. Techniques 

such as cross-validation are useful to determine confidence in model results. 

However, we can optimize machine learning algorithms further.

Besides, we may want to improve the performance regarding time to 

output.

Algorithms can be optimized through the following:

• Algorithm tuning

Tuning can be understood as the process of optimizing the parameters 

that impact the model to enable the algorithm to perform the “best,” based 

on what “best” is specified as.

• Training and validation data

Approaching a machine learning problem with an n-fold cross- 

validation technique allows you to validate your results; whereas a hold- 

back methodology has a waterfall approach to learning.

• Evaluating a range of methods

Trialing a variety of machine learning methods is useful to determine 

which can achieve the most accurate results.
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 Improving Results with Better Data

There are some ways to improve performance with data, including the 

following:

• Getting more data

If you can get more data, this may help the model to improve its 

performance.

• Getting better quality data

Rather than more data, it’s often better, where possible, to get better 

quality data. Typically, this would improve the signal within the data 

and reduce the noise. You can also enhance the quality of data through 

cleaning the data.

• Resample data

Partitioning the sample data into different sizes or distributions may 

represent the concept better or help improve performance by reducing 

attributes (features).

• Data representation

Data can be represented in different ways through the varying machine 

learning methods. Changing the type of machine learning method applied 

and reevaluating the problem may optimize your model.

• Feature selection

Addressing features that are and are not important can present new 

inferences for your model to learn. Increasing the number of features may 

not always be beneficial. However, in unsupervised learning instances, 

it may be beneficial to include all features to ensure nothing goes 

unexplored.

• Feature engineering
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The key to success is the representation of data. Feature engineering 

involves exposing the data in other ways through decomposition and 

aggregation. For example, aggregation may involve categorizing patient 

ages in brackets of 10 years, rather than specifying a continuous number. 

Decomposition involves reducing dependencies within the data. This may 

even involve including attributes previously excluded and unseen to the 

model during data preparation. One of the most famous quotes behind the 

power of data is that of Google’s Research Director and machine learning 

pioneer Peter Norvig, claiming “We don’t have better algorithms. We just 

have more data.”

 Should I Choose a Supervised or Unsupervised 
Algorithm?

When developing models, it’s rarely a case of supervised or unsupervised 

learning. In fact, they can often be used together. Unsupervised learning is 

a useful technique for dimensionality reduction and feature engineering, 

which can be used in supervised learning problems.

 Ensembles

Ensembles are created when several classifiers specialize in various 

aspects of the problem. Ensembles turn a model into a feature. There 

are three types of ensemble algorithms known as bagging, boosting, and 

stacking, covered in Chapter 4.

Ensembles are for advanced practitioners of machine learning.

 Problem Distribution

Another optimization method is distributing the processing used for a 

machine learning task. Tools from Microsoft, such as Azure, and from 

Google, such as AI.io, are examples of warehouses that can distribute 
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problems at scale. In reality, most problems can be contained on a 

multicore implementation.

 Implementation Problems

The user interface or UI is the key component in a machine learning 

application that has human interaction. This is not only where results will 

be displayed but where the most intelligence can be gathered. Rethinking 

the user interface and user experience is worth considering when engaging 

with people.

 Reporting the Results
In many settings, this is the most crucial aspect to ensure internal 

stakeholders support machine learning projects. Typically, a PowerPoint 

presentation and white paper will be good enough to present to your 

company or clients.

Frame the problem as a scientific experiment, assessing the following:

• Why—define the context of the problem and the 

motivation

• Problem—describe the issue as a question

• Solution—explain the answer to the questions 

proposed

• Findings—describe the discoveries made in the data 

and inferences made by the models

• Conclusions—evaluate what was learned from the 

project, addressing the limitations, ethical concerns, 

privacy, and data sensitives (particularly with GDPR).

Once you’ve reported your findings, it’s up to your stakeholders to 

determine the value of the project before deployment, if deployed at all.
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Topics for discussion include how to handle the reporting of false 

negatives, false positives, and the accuracy of predictive claims. Also, the 

implications of predictions are a crucial consideration. Some concerns 

may be first-time problems. For instance, what are the legalities of using 

the data involved? When is a machine learning model truly predictive, or is 

it merely coincidence? What are the implications of being able to diagnose 

someone’s cancer risk precisely?

Novel sources of information such as wearable devices, trackers, 

and EHRs place machine learning in the space of innovation and ethical 

wonderment. The implications for broader healthcare and insurance are 

massive and should be taken into consideration with machine learning 

research projects.

As a result, there has been progress in the field of machine learning 

predictive models, particularly in biomedical research where guidelines for 

reporting on models have been published, including steps for identifying 

prediction problems, ensuring n-fold cross-validation, and calibration of 

outcomes (see Figure 3-11). Calibration has relevance in clinical practice 

and refers to the relationship between the predictions made by the model 

and the observed outcomes. As an example, if the prediction model 

“predicts 70% risk of mortality in the next one year for a patient with lung 

cancer, then the model is well calibrated if in our dataset, approximately 

70% of patients with lung cancer die within the next one year.”
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Figure 3-11. Understanding the task at hand Luo W., Phung D., 
Tran T., Gupta S., Rana S., Karmakar C., Shilton A., Yearwood J., 
Dimitrova N., Ho T. B., Venkatesh S., and Berk M., “Guidelines for 
Developing and Reporting Machine Learning Predictive Models in 
Biomedical Research: A Multidisciplinary View,” J Med Internet Res 
2016; 18(12):e323, URL: https://www.jmir.org/2016/12/e323, doi: 
10.2196/jmir.5870, PMID: 27986644, PMCID: 5238707
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CHAPTER 4

Machine Learning 
Algorithms

“Any fool can know. The point is to understand.”

—Albert Einstein

You do not need a background in algebra and statistics to get started 

in machine learning. However, be under no illusions, mathematics is a 

huge part of machine learning. Math is key to understanding how the 

algorithm works and why coding a machine learning project from scratch 

is a great way to improve your mathematical and statistical skills. Not 

understanding the underlying principles behind an algorithm can lead to 

a limited understanding of methods or adopting limited interpretations 

of algorithms. If nothing else, it is useful to understand the mathematical 

principles that algorithms are based on and thus understand best which 

machine learning techniques are most appropriate.

There is an overwhelming number of machine learning algorithms 

in the public domain. Many are variations (typically faster or less 

computationally expensive) on several prominent themes. Learners 

are the nucleus of any machine learning algorithm, which attempts to 

minimize a cost function—also referred to as an error function or loss 

function—on training and test data.
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Many of your machine learning projects will use defined methods from 

popular libraries such as numpy, pandas, matplotlib, scipy, scikit-learn, 

scrapy, NLTK, and so forth.

The most common machine learning tasks are classification, 

regression, and clustering. Several algorithms can work for functions of 

discrete prediction, such as k-nearest neighbors, support vector machines, 

decision trees, Bayesian networks, and linear discriminant analysis.

This chapter provides a comprehensive analysis of machine learning 

algorithms, including programming libraries of interest and examples of 

real-world applications of such techniques.

 Defining Your Machine Learning Project
Tom Mitchell provides a concise definition of machine learning:  

“A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E.”[50]

This definition can be used to aid machine learning projects in 

assisting us to think clearly about what data is collected and utilized (E), 

what the task at hand is (T), and how we will evaluate the results (P).

 Task (T)
The task refers to what we want the machine learning model to do. The 

function the model learns is the task. This does not refer to the task of 

actually learning but rather the task at hand. For example, a robotic hoover 

would have the task of hoovering a surface. Often a task is broken down 

into smaller tasks.
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 Performance (P)
Performance is a quantitative measure of a machine learning model’s 

ability. Performance is measured using a cost function, which typically 

calculates the accuracy of the model on the task. The performance can be 

measured by an error rate, which is the proportion of examples for which 

the model gives the wrong outputs. The learning method aims to minimize 

the error rate, ideally without falling into local minima or maxima.

 Experience (E)
Experience refers to the amount of labeled data that is available as well as 

the amount of supervision required by the machine learning model.

Mitchell’s reference proves useful in defining machine learning projects. 

This definition helps understand the data required for collection (E), which 

develops as the knowledge base; the problem at hand that needs a decision 

(T); and how to evaluate the output (P).

For example, a prediction algorithm may be assigned task T to 

predict peak emergency hospital admissions based on experience data 

E of past hospital admissions and their respective dates and times. The 

performance measure P could be the accuracy of prediction; and as the 

model receives more experience data, it would ideally become better 

in its forecast. It is noteworthy that one criterion does not necessarily 

determine performance. In addition to accuracy of the prediction, a peak 

hospital admissions method could provide extra information by predicting 

peaks that would be the most costly or resource intensive. Table 4-1 gives 

examples of tasks and the experience which would be created, along with 

performance metrics.
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Machine learning is used to answer questions such as “Is it likely I have 

type 2 diabetes?”; “What object is this in this image?”; “Can I avoid the 

traffic?”; and “Will this recommendation be right for me?.”

Machine learning is employed favorably in each of these problem 

domains, yet the complexity of real-world problems means that it is 

currently infeasible for a specialized algorithm to work faultlessly every time, 

in every setting, for everyone—whether in healthcare or any other industry.

Table 4-1. Understanding a learning problem by its components

Problem Task Performance Experience

Learning how 
to perform 
surgical 
stitching

stitching a 

patient’s head

accuracy (perceived 

pain and/or time 

could be a feature)

stitching of patients’ 

heads and feedback on 

performance measures

Image 
recognition

recognizing a 

person’s weight 

from an image

accuracy of weight 

prediction

training dataset of 

images of people and 

their respective weights

Robotic 
arms used 
for patient 
medication 
delivery

Move the correct 

medication into 

the correct patient 

packet

percentage of 

correctly placed 

medications

training examples,  

real- life experience

Predicting 
the risk of 
disease

Diagnosing 

likelihood of type 2 

diabetes

percentage of 

correctly diagnosed 

patients

training dataset of 

patient health records, 

real-life experience in 

prediction and feedback
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A common aphorism in math comes from British statistician George 

Box: “All models are wrong, but some are useful.” The purpose of 

machine learning is not to make perfect guesses, as there is no such thing 

as an ideal model. Instead, machine learning builds on foundations in 

statistics to provide useful, accurate predictions that can be generalized 

to the real world.

When training a machine learning algorithm, the training dataset must 

be a statistically significant random sample. If this is not the case, there is a 

risk of discovering patterns that don’t exist, or the noise. The memorization 

of training data is known as overfitting. The model remembers the training 

data, performing well in training but not with previously unknown data. 

Equally, if the training data is too small, the model can make inaccurate 

predictions.

The goal of machine learning, whether supervised or unsupervised is 

generalization—the ability to perform well based on past experiences.

 Common Libraries for Machine Learning
Python is increasingly popular within the data science and machine 

learning industry. All of the libraries are open source on Github, which 

also provides metrics for popularity and robustness.

• Github is a service based on the Git version control 

system. The Git approach to storing data is stream-like. 

Git takes a snapshot of your files and stores references 

to these snapshots. Git has three states: committed, 

modified, and staged—which refers to data storage in 

your local filesystem, local file changes, and flagged 

files to be committed, respectively. The benefits of 

using metadata are evident when using Github.
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• Numerical Python, or numpy, is an essential Python 

extension library. It enables fast, N-dimensional array 

objects for vector arithmetic, mathematical functions, 

linear algebra, and random number generation. Basic 

array arithmetic performance is noticeably slower 

without this library.

• SciPy is a library for scientific processing that builds 

on numpy. It enables linear algebra routines as well 

as signal and image processing, ordinary differential 

equation methods, and special functions.

• Matplotlib is a Python library of similar data plotting 

and visualization techniques. MATLAB is a standard 

tool used for data processing. However, the simplicity 

and usefulness of Matplotlib helps Python to become a 

viable alternative to MATLAB.

• Pandas is a tool for data aggregation, data 

manipulation, and data visualization. Within pandas, 

one-dimensional arrays are referred to as Series, with 

multidimensional arrays referred to as DataFrames.

• Scikit-learn contains image processing and machine 

learning techniques. This library is built on SciPy 

and enables algorithms for clustering, classification, 

and regression. This includes many of the algorithms 

discussed in this chapter such as naïve Bayes, decision 

trees, random forests, k-means, and support vector 

machines.
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• NLTK, or Natural Language Toolkit, is a collection of 

libraries that are used in natural language processing. 

The NLTK enables the foundations for expert systems 

such as tokenization, stemming, tagging, parsing, and 

classification—which are vital for sentiment analysis 

and summarization.

• Genism is a library for use on unstructured text.

• Scrapy is an open source data mining and statistics 

designed initially for scraping web sites.

• TensorFlow is a Google Alphabet-backed open source 

library of data computations optimized for machine 

learning. It enables multilayered neural networks and 

quick training. TensorFlow is used in many of Google’s 

intelligent platforms.

• Keras is a library for building neural networks that 

builds on TensorFlow.

 Supervised Learning Algorithms
In many supervised learning settings, the goal is to finely tune a predictor 

function, f(x), or the hypothesis. The learning comprises of using 

mathematical algorithms to represent the input data x within a particular 

domain. For example, x could take the value of the time of day, and f(x) 

could be a prediction of waiting time at a particular hospital.

In reality, x typically represents multiple data points. Hence inputs are 

expressed as a vector. For instance, in the preceding example, f(x) takes in 

input x as the time of the week. In improving the predictor, we could use 

not only day (x1), but time (x2) of day, weather (x3), place within the queue 

(x4), and so on—on the premise the data was available. Deciding which 

inputs to use is an integral part of the machine learning design process.
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Each record i in the dataset is a vector of features x(i). In the case of 

supervised learning, there will also be a target label for each instance, y(i). 

The model is trained with inputs in the form (x(i), y(i)). The training dataset 

can be represented as {(x(i), y(i)); i = 1, . . . , N}, where x represents the input 

and y the output.

The model has the simple form:

f(x) = ax + b, where a and b are constants, and b refers to the noise in 

the data.

Machine learning aims to find optimal values of a and b such that 

the predictions f(x) are as accurate as possible. The method of learning is 

inductive. The model trawls the training dataset to learn patterns in the 

data. The model induces a pattern, or hypothesis, from a set of examples. 

The output of a machine learning prediction model differs from the actual 

value of the function due to bias, noise, and variance, as discussed in 

chapter 3.

Optimization of f(x) takes place through training examples. 

Each training example {x1 . . . xn} has an input value x_training and a 

corresponding output, Y. Each example is processed, and the difference 

between the known and correct value y (where y ∈ Y) and the predicted 

value f(h_training) is computed. After processing a suitable number of 

samples from the training dataset, the error rate of f(x) is calculated, 

and values a and b are used as factors to improve the correctness of the 

prediction.

This also addresses inherent randomness or noise in the data, also 

referred to as irreducible error.

There are two different main approaches when it comes to feature 

selection. First, an independent assessment based on the general 

characteristics of the data. Methods belonging to this approach are called 

filter methods, as the feature set is filtered out before model construction. 

The second approach is to use a machine learning algorithm to evaluate 

different subsets of features and finally select the one with the best 
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performance on classification accuracy. The latter algorithm will be used 

in the end to build a predictive model. Methods in this category are called 

wrapper methods because the arising algorithm wraps the entire feature 

selection process.

The law of large numbers theorem applies to machine learning 

prediction. The theorem describes how the result of a large number of 

identical experiments will eventually converge, or even out.

This process is iterated until the system converges on the best values 

for a and b. As such, the machine learns through experience and is ready 

for deployment. Typically, we are concerned with minimizing the error of a 

model or making the most accurate predictions possible.

Within supervised machine learning, there are two main approaches: 

regression-based systems and classification-based systems.

 Classification
Classification is the process of determining a category for an item 

(or items, x) from a set of discrete predefined categories (or labels, y) 

through approximating a mapping function, f. Classification algorithms 

use features (or attributes) to determine how to classify an item into at 

least a binary class, or two or more classes.

Training data is supplied as an input vector. The input vector consists 

of labels for item features. For instance, an item may read the following:

{“HbA1c, 7.8%”, “Diabetic”} in the form {x_training, output}

It is from the data that classification algorithms learn to classify. 

Classification problems require examples to be labeled to determine 

patterns; hence a model’s classification accuracy is best validated through 

the correctly classified examples of all predictions made.

Algorithms that perform classification include decision trees, Naïve 

Bayesian, logistic regression, kNNs (k-nearest neighbors), support vector 

machine, and so forth.
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Common use cases of classification algorithms are the following:

• Suggesting patient diagnosis based on health  

profile—that is, does patient have retinopathy?

• Recommending the most suitable treatment pathway 

for a patient

• Defining the period in the day in a clinic that there are 

peak admissions

• Determining patient risk of hospital readmission

• Classify imagery to identify disease—for example, 

determining whether a patient is overweight or not 

from a photograph

 Regression
Regression involves predicting an output that is a continuous variable. As 

a regression-based system predicts a value, performance is measured by 

assessing the number of prediction errors.

The coefficient of determination, mean absolute error, relative 

absolute error, and root mean square error are statistical methods used for 

evaluating regression models.

Regression algorithms include linear regression, regression trees, 

support vector machines, k nearest neighbor, and perceptrons.

It is often possible to convert a problem between classification and 

regression. For example, patient HbA1c can also be useful if stored as a 

continuous value. A continuous value of HbA1c = 6.9% can be classified 

into a discrete category, diabetic, on rules defined on HbA1c as Diabetic 

(Set 1): HbA1c ≥ 6.5%, Non-diabetic (Set 2): HbA1c < 6.5%.

Time series refers to input data that is supplied in the order of time. 

The sequential ordering of the data adds a dimension of information. Time 

series regression problems are commonplace.
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Common use cases of regression algorithms are the following:

• Estimating patient HbA1c from previous blood glucose 

readings (time series forecasting)

• Predicting the days before hospital readmission (which 

may be received as a time-series regression problem)

• Approximating patient mortality risk based on  

clinical data

• Forecasting the risk of developing health complications

• Forecasting when the office printer will be queued with 

requests from other employees

 Decision trees
Decision trees are flowcharts that represent the decision-making process 

as rules for performing categorization. Decision trees start from a root and 

contain internal nodes that represent features and branches that represent 

outcomes. As such, decision trees are a representation of a classification 

problem. Decision trees can be exploited to make them easier to 

understand. Each decision tree is a disjunction of implications (i.e., if–then 

statements), and the implications are Horn clauses that are useful for logic 

programming. A Horn clause is a disjunction of literals.

On the basis that there are no errors in the data in the form of 

inconsistencies, we can always construct a decision tree for training 

datasets with 100% accuracy. However, this may not roll out in the real 

world and may indicate overfitting, as we will discuss.
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For instance, take the simplified dataset Table 4-2, which can be 

represented as the decision three as shown in Figure 4-1:

Table 4-2. Risk of type 2 diabetes

Record Unhealthy BMI Ethnicity Outcome

Person 1 Yes >25 indian High risk

Person 2 Yes <25 indian Low risk

Person 3 Yes >25 Caucasian High risk

Person 4 no <25 Caucasian Low risk

Person 5 no >25 Chinese Medium risk

Classifying an example involves subjecting the data to an organized 

sequence of tests to determine the label. Trees are built and tested from 

top to bottom as so

 1. Start at the root of the model

 2. Wait until all examples are in the same class

 3. Test features to determine best split based on a cost 

function

 4. Follow the branch value to the outcome

 5. Repeat number 2

 6. Leaf node output

The central question in decision tree learning is which nodes should 

be placed in which positions, including the root node and decision nodes. 

There are three main decision tree algorithms. The difference in each 

algorithm is the measure or cost function for which nodes, or features, are 

selected. The root is the top node. The tree is split into branches; evaluated 

through a cost function; and a branch that doesn’t split is a terminal node, 

decision, or leaf.
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Decision trees are useful in the way that acquired knowledge can be 

expressed in an easy to read and understandable format (see Figure 4-1).  

It mimics human decision-making whereby priority—determined by 

feature importance, relationships, and decisions—is clear. They are simple 

in the way that outcomes can be expressed as a set of rules.

Figure 4-1. Decision tree of n = 2 nodes

Decision trees provide benefits in how they can represent big 

datasets and prioritize the most discriminatory features. If a decision tree 

depth is not set, it will eventually learn the data presented and overfit. 

It is recommended to set a small depth for decision tree modeling. 

Alternatively, the decision tree can be pruned, typically starting from the 

least important feature, or the incorporation of dimensionality reduction 

techniques.

Chapter 4  MaChine Learning aLgorithMs



132

Overfitting is a common machine learning obstacle, and not limited 

to decision trees. All algorithms are at risk of overfitting, and a variety 

of techniques exist to overcome this problem. Random forest or jungle 

decision trees can be extremely useful in this.

Pruning reduces the size of a decision tree by removing features that 

provide the least information. As a result, the final classification rules are 

less complicated and improve predictive accuracy.

The accuracy of a model is calculated as the percentage of examples in 

the test dataset that is classified correctly.

• True Positive / TP: Where the actual class is yes, and 

the value of the predicted class is also yes

• False Positive / FP: Actual class is no, and predicted 

class is yes

• True Negative / TN: The value of the actual class is no, 

and the value of the predicted class is no

• False Negative / FN: When the actual class value is yes, 

but predicted class is no

• Accuracy: (correctly predicted observation)/(total 

observation) = (TP + TN)/(TP + TN + FP + FN)

• Precision: (correctly predicted Positive)/(total 

predicted Positive) = TP/TP + FP

• Recall: (correctly predicted Positive)/(total correct 

Positive observation) = TP/TP + FN

Classification is a common method used in machine learning; and 

ID3 (Iterative Dichotomizer 3), C4.5 (Classification 4.5), and CART 

(Classification And Regression Trees) are common decision tree methods 

where the resulting tree can be used to classify future samples.
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 Iterative Dichotomizer 3 (ID3)
Python: scikit-learn; Method: decision-tree-id3

Ross Quinlan has contributed significantly to the area of decision 

tree learning, developing both ID3 and C4.5.[51] The ID3 algorithm uses 

the cost function of information gain, based on work from “the father 

of information theory” Claude Shannon. Information gain is calculated 

through a measure known as entropy.

Entropy determines how impure, or disordered, a data set is. Given an 

arbitrary categorization C, into categories {c1, . . . cn} and a set of examples 

S, for which the proportion of ci is pi, the entropy of sample S is the 

following:

H S p x p x
x X

( ) = - ( ) ( )
Î
å log2

Information gain is calculated using entropy. This value is given for 

attribute A, with respect to examples S. The values attribute A can take, 

{t1, . . . tn}, representing the totality of set T.

IG A S H S p t H t
t T

,( ) = ( ) - ( ) ( )
Î
å

ID3 selects the node with the highest information gain to produce 

subsets of data that are then applied the ID3 algorithm on recursively. The 

information gain of an attribute can be understood as the expected loss 

in entropy as the result of learning the value of attribute A. The algorithm 

terminates once it exhausts the attributes or the decision tree classifies 

the examples completely. ID3 is a classification algorithm that is unable to 

cater for missing values.
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For example, if the following row were to be received, the model would 

categorize the outcomes as high risk. There is a chance that ethnicity is a 

determining factor in the outcome. However, there is not enough data for 

the model to learn the potential outcome.

Record Unhealthy BMI Ethnicity Outcome

Person 5 no <25 Chinese ?

 C4.5
Python: scikit-learn; Method: C45algorithm

C4.5 is an enhancement built on ID3 that takes number and size 

of branches into account when choosing an attribute. C4.5 can handle 

continuous and discrete labels and uses gain ratio as its splitting criteria. 

It improves on the execution time and accuracy as the size of the dataset 

increases. C4.5 introduces pruning—a bottom-up technique also known 

as subtree raising—and subtree replacement to ensure the model doesn’t 

overfit the data.

 CART
Python: scikit-learn; Method: cart

CART, or Classification And Regression Trees, use Gini index as the 

cost function. Represented as a binary tree, as with C4.5, CART can be 

used for regression and classifications problems. While entropy is used for 

exploratory analysis, Gini is to minimize misclassification.

Chapter 4  MaChine Learning aLgorithMs



135

 Ensembles
An ensemble is a form of machine learning algorithm and is a popular 

technique employed in the field of machine learning. Ensemble methods 

use a collection of machine learning models or learners. As a result, a group 

of weak learning models is combined to create a more accurate learner.

 Bagging
Bagging is an ensemble technique that involves creating multiple 

independent models with datasets using the bootstrap sampling 

technique (see Figure 4-2). The technique aids in reducing error by 

reducing variance. In general, bagging improves predictions as anomalous 

behaviors are averaged out. In comparison, a collection of iterative 

predictive models is known as boosting.

Figure 4-2. Bagging vs. boosting
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In bagging, n′ < n samples are taken from dataset D with replacement. 

A random selection of features for constructing the best split is chosen 

each time.

An average, majority vote, or statistical method, is used to determine 

the average prediction from a model. Random forest decision trees (see 

Figure 4-3) extend the concept of bagging, as they use a random subset of 

features too, resulting in less correlation among predictions from learners.

Figure 4-3. Random forest decision trees

 Random Forest Decision Trees

Python: scikit-learn; Method: RandomForestClassifier

Random forests are created through training multiple decision trees 

at the same time and refer to a collection of decision tree learners (hence 

the “forest”). The purpose of random forests is to prevent overfitting. The 

more decision trees in the random forest, the more accurate results are. 

Each random forest takes a sample of the dataset and a random subset of 

features for decision.

Random forest decision trees can be used for classification and 

regression problems. With regression problems, an average of the 

outcomes is taken; whereas with classification problems, it is the majority 
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category. A random forest decision tree is an ensemble of different models. 

This is an ensemble method due to the procedure reducing variance in the 

algorithm through combining predictions from multiple models.

The random forest model seems to work particularly well when data 

is limited to classification or decision problems by bootstrapping existing 

data. A benefit of random forest classifiers is that it can also handle  

missing values.

 Boosting
Boosting is an ensemble method that produces a collection of predictive 

models iteratively. The concept involves each new model learning from 

the errors of previous models. Boosted methods are typically implemented 

when there is a plethora of data for prediction.

Through iteratively creating new models to compensate for error, 

the process “boosts” or converts weak learners into strong learners—

reducing their bias and variance. Each iteration of the technique learns 

relationships in the data and is then subsequently analyzed for errors, with 

incorrect classifications given a weighting. The aim is to minimize the error 

from the previous model. The underlying machine learning method used 

for boosting algorithms can be anything.

Boosting works through the following process:

 1. Data is represented

 2. Decision stump is made on the most significant cut 

of features

 3. Weightings are given to misclassified observations

 4. The process is repeated and all stumps combined to 

achieve final classifier
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 Gradient Boosting

Python: scikit-learn; Method: GradientBoostingClassifier, 

GradientBoostingRegressor

Gradient boosting is known by many names including multiple 

additive regression trees, stochastic gradient boosting, and gradient 

boosting machines. Gradient boosting is a technique derived from 

decision trees when Jerome Friedman applied the gradient boosting 

concept to decision trees in 2001.[52] AdaBoost (Freund and Shapire, 

2001) is a gradient boosting variant. In gradient boosting, the model is 

trained sequentially. Each iterative model seeks to minimize the loss 

function.

Similar to random forest decision trees, gradient boosting is made 

from weak predictors. Each new tree is subsequently trained with the 

data previously incorrectly classified by the previous tree. This iterative 

procedure expedites the model by focusing on more challenging data as 

easier predictions are made early on in learning.

XGBoost, or extreme gradient boosting, are variations of gradient 

boosting. XGBoost adds regularization and takes advantage of computing 

power with distributed, multithreaded processing for greater speed and 

efficiency.

 Adaptive Boosting

Python: scikit-learn, numpy; Method: AdaBoostClassifier, 

AdaBoostRegressor

Adaptive boost is a popular method that iteratively learns from 

mistakes. Decision tree stumps are weak learners, splitting data by one 

rule only. The decision tree stump is improved by focusing on samples that 

were incorrectly classified. These are identified through weightings that 

are associated with the data. The model can learn from its mistakes and 

provides a final solution with lower bias than a single decision tree.
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 Linear Regression
Python: scikit-learn; Method: linear_model.LinearRegression

Linear regression is a continuous statistical technique to understand 

the relationship between input (x: predictors, explanatory or independent 

variables) and output (y: response or dependent variable). As the name 

suggests, linear regression (see Figure 4-4) requires that y be calculated 

from a linear combination of input variables. The aim is to place a line of 

best fit through all of the data points, which enables easy understanding of 

predictions by minimizing margin or residual variation.

min yiyi -( )å ˆ ,
2

where yi is the actual observed response value; ŷ i  is the predicted 

value of response variable; and their subtraction is the residual variation or 

difference between observed and predicted values of y.

• Criterion variable: outcome variable we are predicting

• Predictor: what variable predictions are based on

• Intercept: where the line of best fit intercepts the y-axis

When there is one input variable x, this technique is known as simple 

linear regression. Multiple linear regression evaluates two or more 

predictor variables.
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where y is the output variable, x is the predictor, B0 and B1 are coefficients 

that are estimated to move the line of best fit, x̄ refers to the mean of x, B0 is 

the bias or intercept (where it intercepts the y-axis), and B1 is the slope or 

rate at which y increases/decreases per unit of x.

Figure 4-4. Linear regression

Once the model has learned the parameters, they are used to predict 

values of y given new, unseen input X.

Popular techniques used to estimate the coefficients are ordinary least 

squares and gradient descent. Given a line of best fit placed through a 

sample dataset with a linear relationship, ordinary least squares attempts 

to minimize the sum of the squared distances from each data point to the 

regression line. The intention is to minimize the sum of squared residuals. 

Coefficient values are iteratively optimized to reduce the error of the model.

Ordinary least squares start with random values for B0 and B1. 

The sum of squared errors is calculated for each (input, output) pair. A 

learning rate is chosen, which acts as a scale factor; and the coefficients are 

optimized toward minimizing the error until no further gains can be made.
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A learning rate is a hyperparameter that has its value determined by 

experimentation. Different values are tried, and the value that gives the 

best results is used.

Criticisms of linear regression focus on its simplicity, resulting in it 

being unable to capture complex relationships within the data. Noise 

in the data can also be learned by the model, resulting in overfitting. 

Relationships between variables are not always linear, and therefore 

a linear regression model can perform poorly on data with nonlinear 

relationships. However, variables can sometimes be transformed to fit 

a linear regression model. Linear regression also assumes variables are 

homoscedastic, which means all variables in the vector have the same 

variance.

The aforementioned is a perfect demonstration as to why when 

training a model, one should use a variety of machine learning algorithms.

 Logistic Regression
Python: scikit-learn; Method: linear_model.LogisiticRegression

Linear regression applies to continuous variables, whereas logistic 

regression predictions apply to discrete values or classification problems 

after the application of a transformation function.

Developed by statistician David Cox in 1958, logistic regression (or 

logit regression) is often used for binary classification problems. For 

example, logistic regression can be used to predict whether a patient will 

experience an adverse event given a particular medication; whether a 

patient is likely to be readmitted to a hospital or not; or whether a patient 

has a particular disease diagnosis.

Unlike linear regression, the output of the model comes in the  

form of a probability between 0 and 1. The predicted output is generated  

by log-transforming the x input and using the logistic function h(x) =  

1/(1 + e^ –x). A specified threshold is used to transform this probability 

into a binary classification.
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Logistic regression uses the sigmoid function, an S-shaped curve 

(see Figure 4-5) that can take any continuous value and map it into a 

probability value between 0 and 1 for a default class.

Sigmoid function: 1/(1 + e^–value), where e Euler’s number and value 

is the value requiring transformation.

Logistic regression uses an equation P(x) = e ^ (b0 + b1*x)/(1 + e^(b0 + 

b1*x)), which can be transformed into ln(p(x)/1–p(x)) = b0 + b1*x). As with 

linear regression, b0 and b1 are values learned from the training data.

As an example, take a model that determines whether a growth on 

the skin surface is benign or not. The input variable, x, could be the size, 

depth, or texture of the growth; and the default variable y = 1 indicates a 

benign growth. As depicted, the logistic function transforms the x-value 

of the various instances into a probability value between 0 and 1. If the 

probability crosses the threshold of 0.5, the tumor is classified as benign.

Logistic regression seeks to learn values of b0 and b1 through 

training that minimize the error between predicted and actual outcomes. 

Maximum likelihood estimation is an iterative procedure used for this 

purpose. Maximum likelihood estimation starts with a random value as the 

Figure 4-5. Logistic function
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best weight for each predictor variable and then adjusts these coefficients 

iteratively until there is no improvement in the ability to predict the 

outcome value. The final coefficients have a value that minimizes the error 

in the probabilities predicted.

As with linear regression, logistic regression assumes a linear 

relationship between input variables and output. Feature reduction may 

be required to transform data into linear models. Logistic regression 

models are also prone to overfitting, which may be overcome through the 

removal of highly correlated inputs. Finally, it is possible that coefficients 

fail to converge, which can happen if data is sparse or highly correlated.

 SVM
Python: scikit-learn Method: svm.SVC, svm.LinearSVC

Support vector machine (SVM) is a nonprobabilistic binary linear 

classifier used with both classification and regression problems. SVM is 

often used along with NLP methods to analyze text for topic modeling 

and sentiment analysis. It is also used in image recognition problems and 

handwriting digit recognition.

The algorithm finds a hyperplane, or line of best fit, between two 

classes determined by the support vectors. Support vectors are the 

data points nearest the hyperplane that would alter the position of the 

hyperplane if removed. The greater the margin value, or distance from the 

data points to the hyperplane, the more confidence there is that the data is 

appropriately classified. The line of best fit is learned from an optimization 

procedure that seeks to maximize the margin.

SVM uses something known as kernelling to map data to higher 

dimensional feature spaces. Data is mapped using the kernel trick in 

iteratively more dimensions until a hyperplane can be formed to classify it.
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Take the problem in Figure 4-6. On the left, we see that it would be 

impossible to find a line of best fit in two dimensions. SVM uses the kernel 

trick to map data into three dimensions and can define a hyperplane to 

classify the data.

SVMs take numerical inputs and work well on small datasets. However, 

as dimensionality increases, the ability to understand and explain the 

model reduces. As dataset size increases, so too can training time. SVMs 

are also less capable on noisy data.

The SVM can be expressed as a sum over the support vectors (see 

Figure 4-7):

Figure 4-7. SVM expressed as a sum over the support vectors

Figure 4-6. SVM visualization
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 Naive Bayes
Python: scikit-learn; Method: GaussianNB, MultinomialNB, BernoulliNB

Naïve Bayes uses Bayes’ theorem to calculate the probability an event 

will occur given another event has already occurred. The algorithm is 

acknowledged as naïve because it assumes all variables are independent 

of each other, which is atypical of real-world examples. The Bayesian 

classifier is often used when input dimensionality is high.

For example, given a specified threshold, this method can be used to 

probabilistically classify whether a vector is in one class or another:

P(B|A) = (P(A|B) * P(B))/P(A)

• P(B|A) = Posterior probability (see Figure 4-8). 

Probability of hypothesis B being true, given the data A, 

where P(B|A)= P(a1|b) * P(a2|b) * . . . * P(an|b) * P(A)

• P(A|B) = Likelihood: the probability of data A given that 

the hypothesis B was true

• P(A) = Class prior probability

• P(B) = Predictor prior probability
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The prior distribution P(B) and likelihood probability P(B|A) can be 

estimated from the training data. To calculate which class an example 

belongs to, the probability of being in each class is calculated. The class 

assigned to an example is the class that produces the highest probability 

for the example.

Figure 4-8. Posterior probability

Table 4-3. Outcome liklihood

Record Unhealthy Outcome

Person 1 Yes High risk

Person 2 Yes Low risk

Person 3 Yes High risk

Person 4 no Low risk
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Using Table 4-3 as a simple example, we can learn the probability 

of a patient’s disease risk from whether they are unhealthy or not. 

To determine the outcome for unhealthy = yes, we calculate P(high 

risk|unhealthy) and P(low risk|unhealthy) and choose the outcome with 

the highest probability.

P(high risk|unhealthy)

= (P(high risk|unhealthy) * P(high risk))/P(unhealthy) =  

(2/2 * 2/4)/(3/4) = 0.66

Naïve Bayesian models are easy to build and particularly useful for 

extensive data sets. Along with its simplicity (and hence its naïvety), Naïve 

Bayes is known to outperform even highly sophisticated classification 

methods.

kNN: k-nearest neighbor
Python: scikit-learn; Method: neighbors.KNeighborsClassifier

Not to be confused with k-means clustering, the kNN method classifies 

an unknown object O with the label of the majority of the k-nearest 

neighbors. Used in classification and regression problems, kNNs are a 

nonparametric techniqu;. they do not learn a model. Instead, kNNs store 

the training dataset as its representation and perform classification of a 

new sample based on learning by analogy. As there is no learning of the 

model, kNNs are considered lazy learners.

Each object represents a point in N-dimensional space. A neighbor 

is defined nearest if it has the smallest distance in feature space. The 

distance between an unseen object and its neighbor is calculated using the 

Euclidian distance between A = (a1 . . . an) and B = (b1 . . . bn) as follows:
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The algorithm works as such:

 1. Calculate the distance between any two points

 2. Find the nearest neighbors based on these pairwise 

distances

 3. Majority vote on a class label based on the nearest 

neighbors list

The prediction is made at the time of the request. In regression 

problems, the mean or median of the k-most similar instances is used. 

In classification problems, the class with the highest frequency from 

the k-most similar instances is selected. As with most algorithms, the 

determinant method can vary. The distance between binary vectors 

(Hamming distance) and the sum of absolute difference between real 

vectors (Manhattan distance) are also used.

A disadvantage of kNNs is the large computing requirement  

for classifying an object, as the distance for all neighbors in the  

training dataset must be calculated. It is not particularly well suited to 

high- dimensional data. Each predictor variable can be considered a 

dimension of n-dimension input space. For instance, x1 would be  

one-dimensional and x1, x2 two-dimensional, and so on. The increase in 

dimensionality exponentially increases the volume of the input space.

kNNs are not well suited to data with missing values, as distances 

between vectors cannot be calculated on missing data.

 Neural Networks
The biological mechanism in which the brain works inspires artificial 

neural networks, a different paradigm for computing, based on the parallel 

architecture of animal brains.

Neural networks are well-equipped for data mining tasks due to their 

ability to model multidimensional data and efficiency at finding hidden 
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patterns among data. Neural networks can be applied to prediction 

and classification problems. The process of estimating the result and 

comparing it with the real output is known as forward propagation.

Neural networks are a subset of machine learning algorithms, which 

includes perceptrons, fully connected neural networks, convolutional 

neural networks, recurrent neural networks, long short-term memory 

neural networks, autoencoders, deep belief networks, generative 

adversarial networks, and many more. Most of them are trained with an 

algorithm called backpropagation.

Artificial neural networks (ANNs) are used in a plethora of tasks:

• Classifying disease: computers can learn what images 

of diseased organs—such as kidneys, eyes, liver—look 

like to predict the likelihood of disease

• Recognizing speech

• Translating and digitalizing text

• Facial recognition

Neural networks can learn how to accomplish a task like a human 

brain—supervised, unsupervised, and through reinforcement learning.

 Perceptron
Perceptrons are the fundamental units of ANNs. In AI, the perceptron 

is a node or unit that takes multiple inputs and has a single output, 

typically 1 or –1. Perceptrons take a weighted sum of the inputs, S, and 

a unit function calculates the output for the node (see Figure 4-9). Unit 

functions can be the following:

• Linear—such as the weighted sum

• Threshold functions that only fire if the weighted sum is 

over a threshold
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• Step functions that output the inverse, typically –1, if S 

is less than the threshold

• Sigma function (1/(1 + e – s), which allows for 

backpropagation

Figure 4-9. Configuration of an artificial neuron

Perceptrons mimic biological neurons (see Figure 4-10), where 

dendrites receive an input. If the signal is high enough within a set 

duration of time, the neuron sends an electrical pulse to the terminals then 

received by dendrites of other neurons. Each perceptron has a bias, similar 

to b of the linear function y = ax + b. It moves the line up and down to fit 

the prediction with the data better.
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where 1 is x0 and b = w0.

Chapter 4  MaChine Learning aLgorithMs



151

 Artificial Neural Networks
Python: scikit-learn; Method: linear_model.Perceptron

Artificial neural networks are made of perceptrons and contain one or 

more hidden layers (see Figure 4-11). There are several topologies, with 

the simplest being a feedforward network. Backpropagation is the method 

of determining the error, or loss, at the output and propagating it back to 

the network. Weights at each node are updated to minimize the respective 

error output from each neuron. Backpropagation seeks to minimize 

the error for neurons and thereby the entire model through updating 

respective neuron weights.

Figure 4-10. Configuration of a biologic neuron
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The primary learning that must be accomplished in neural network 

models is training neurons when to fire. An epoch refers to one training 

iteration of forward- and backpropagation. During the learning phase, 

nodes in a neural network adjust their weights based on the error of the 

last test result. The learning rate controls how fast the network learns.

The number of perceptrons or neurons in a model are equal to the 

number of variables in the data. Some representations may also have a bias 

node. Typically, artificial neural networks have neurons organized in layers. 

Each layer can perform different transformations on the input data it receives.

 Deep Learning
Deep learning is a process that employs deep-layered neural network 

architectures. Training a deep, artificial neural network model requires 

more time and CPU power compared to other types of models. Noteworthy 

Figure 4-11. Organization of an artificial neural network
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is that the performance of ANN models may not necessarily be superior to 

typical supervised learning techniques.

Deep learning is not a new technique; however, it is becoming more 

frequent with hardware advances, primarily power and cost, which 

have made such computing feasible. Deep neural networks (DNN) were 

used by Alphabet to create the strongest Go player in history, defeating 

several human champions of Go in 2017.[53] The ancient game of Go 

has historically been considered a challenge for AI and demonstrates the 

capabilities of deep learning (see Figure 4-12).

There are many types of artificial neural networks, including the 

following.

Figure 4-12. Deep learning: Where does it sit?
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 Feedforward Neural Network
In a feedforward neural network, the sum of the weighted inputs is fed to 

the output (see Figure 4-13). The output is activated (typically 1) when 

the sum exceeds the unit function threshold. If it doesn’t fire, it typically 

outputs –1.

Figure 4-13. Feedforward neural networks

 Recurrent Neural Network (RNN)—Long  
Short- Term Memory
Recurrent Neural Networks or RNNs save the output of a layer and  

feed it back to the input to improve predictions of the output layer 

(see Figure 4- 14). As such, each node has a memory when performing 

computations and makes use of sequential information. As a result, nodes 

are deemed to have a memory.
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Figure 4-14. Recurrent neural networks

 Convolutional Neural Network
Convolutional neural networks are deep, feedforward neural networks. 

Layers are known as convolutional layers and are often used in speech 

recognition, spatial data, NLP, and computer vision problems. Separate 

convolutional layers typically apply to different aspects of a particular 

problem. For instance, in understanding whether there is a face present 

within a photograph, separate convolutional layers within a DNN may be 

used to identify different aspects of the face—the eyes, nose, ears, mouth, 

and so forth.

 Modular Neural Network
Similar to the human brain, the concept of modular neural networks is that 

of neural networks working together.
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 Radial Basis Neural Network
A neural network that uses radial basis activation functions where the 

value depends on the distance from the origin (see Figure 4-15).

Figure 4-15. Radial basis neural network

The key strength of ANNs and deep learning lie in the ability to 

generate complex linear and nonlinear models from the training dataset.

DNNs (deep and multilayered ANNs) can learn complex relationships 

between data from training data alone, which typically improves 

generalization. DNNs can still succumb to the problem of overfitting data, 

so appropriate pruning may be required. As the name suggests, deep 

networks can also take a long time to train and require a large number of 

training examples.

A common concern with neural networks, particularly in healthcare, 

is that they act as a black box and do not present a clear interface for a user 

to understand findings. Practically, an ANN model is difficult to interpret, 

and weights and biases aren’t readily interpretable to what is important in 

the model.

Chapter 4  MaChine Learning aLgorithMs



157

It is typically considered that for supervised learning problems, the 

upper bound on neurons to prevent overfitting is

Nh=Ns(α ∗(Ni + No)),

where

Ni = number of input neurons;

No = number of output neurons;

Ns = number of samples in training dataset; and

α = an arbitrary scaling factor.

 Unsupervised Learning
Unsupervised learning refers to the process of learning a model from 

unlabeled data. This means that input data (x) is supplied without  

output (y). Algorithms are left to determine notes within data, which 

means there is no right or wrong answer.

Semi-supervised learning occurs when some output labels (y) are 

supplied. For example, learning would be semi-supervised in a model 

learning to predict diabetic retinopathy from patient eye scans with 

partially labeled data. If only a subset of eye scans had appropriately 

labeled outputs (e.g., retinopathy, not retinopathy), the model might not 

have enough appropriate data to learn a model. As more labeled data is 

provided for the model to train on, the system would likely become more 

accurate.

Unsupervised learning can be resource consuming concerning time, 

money, and expertise. Usually, vast improvements in model accuracy can 

be made through improving labeling of data.

Unsupervised learning is composed of two main problem concepts: 

clustering and association.
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 Clustering
Clustering refers to the process of discovering relationships within the 

data. Clustering is used for a variety of healthcare uses including the 

following:

• Grouping patients of similar profiles together for 

monitoring

• Detecting anomalies or outliers in claims or 

transactions

• Defining treatment groups based on medication or 

condition

• Detecting activity through motion sensors

 K-Means
Python: scikit-learn; Method: cluster.KMeans

K-means clustering (see Figure 4-16) aims to find k similar groups 

within the data. K-means is an iterative algorithm that calculates the 

centroids of the defined k clusters, with all training data assigned to a 

cluster. Data points are assigned by the distance between the data point 

and its centroid. A cluster centroid is a collection of attribute values that 

define the resulting clusters.

arg ,min
c C

i
i

dist c x
Î
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2

where ci is the collection of centroids in set C, and distance (dist) is 

standard Euclidean distance.
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Rather than defining groups before data exploration, clustering 

enables the model to determine groups that have formed organically.

Steps of the K-means algorithm include the following:

• Step 1: Set a value of k. Here, let us take k = 2.

• Assign each data point randomly to any of the k = 2 

clusters.

• Determine the centroid for each of the clusters.

• Step 2: For each data point, associate it to the closest 

cluster centroid.

• Step 3: Recalculate centroids for the new clusters.

Figure 4-16. K-means clustering
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Step 4: Continue

• this process until the centroid clusters remain 

unchanged.

 Association
Association rule learning methods extract rules that best explain perceived 

relationships between variables in data. These rules can discover useful 

associations in large multidimensional datasets that can be used to drive 

and optimize.

Association rule learning is historically best applied to online shopping 

checkout basket datasets gathered on users’ purchasing habits. For 

instance, when someone buys a pizza, they may also tend to purchase 

wine, just like how someone who purchases lettuce may tend to buy 

tomatoes, cucumbers, and onion too. Through analyzing transactional 

datasets, the probability of associations can be predicted. We know that 

certain items (whether that be food, clothes, or even disease) frequently 

occur together, and association rule learning seeks to understand these 

relationships.

In healthcare, in particular, associative symptoms can be understood 

to predict better and diagnose disease and adverse events. Potential 

adverse effects based on medication and associative patient comorbidity 

pathways could lead to improved care and treatment pathways.

There are three important metrics to be familiar with:

Support
Support is the value of absolute frequency. An association rule 

holds with support sup in dataset T if the sup % of transactions contain 

X U Y. This represents how popular an itemset is, as measured by the 

proportion of transactions in which an itemset appears.

sup = Pr(X U Y) = count(X U Y)/total transaction count
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Confidence
The confidence measure represents correlative frequency. An 

association rule holds in dataset T with confidence conf if the conf % of 

transactions that contain X also contain Y. This estimates how likely item 

Y is to occur or be present in the transactional dataset when item X occurs. 

This is expressed as {X → Y} and measures the proportion of transactions 

with item X in which item Y also appears.

conf = Pr(Y|X) = count(X U Y)/count(X)

Lift
Lift determines how likely item Y is given that X occurs while 

accommodating for Y’s popularity.

Lift = Support (X U Y)/Support (X) * Support (Y)

Association rules determine the probability of Y given that X occurs. 

The benefits of these associations have applications across industry. There 

are many association rule mining algorithms that use different strategies 

toward understanding associations and use different structuring of data.

 Apriori
Apriori is the most popular association rule mining algorithm. The Apriori 

algorithm is frequently used in pattern mining and in the identification 

of features and items that occur together. It is used extensively in basket 

analysis and is a powerful tool to find hidden feature patterns. It is usually 

applied to transactional databases to mine frequent relationships and 

generate association rules.

Apriori begins with a set of n items. The algorithm calculates all 

possible candidate itemsets, or frequent itemsets, which meet the 

specified threshold support and confidence values. The Apriori property 

states for an itemset to be frequent, all of its subsets must also be frequent. 
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The Apriori algorithm uses a bottom-up approach; frequent subsets are 

identified and increased one item at a time.

The Apriori method is relatively simple (see Figure 4-17):

• Apply minimum support to find all frequent sets of k 

items within dataset T where a frequent itemset has 

support ≥ min(sup)

• Expand selection to find frequent sets of k + 1 items 

using frequent k-itemset

The maximum size of an itemset is k, the number of items.

Figure 4-17. Apriori

 Dimensionality Reduction Algorithms
Although the message is broadly the more data, the better, datasets can 

often contain many variables and as a result make capturing the signal of 

the data a more laborious task. Whether it’s sparse values, missing values, 

identifying relevant features, resource efficiency, or more straightforward 

interpretation, dimensionality reduction algorithms are very useful to data 

scientists.
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As the name suggests, dimensionality reduction algorithms or DRAs 

reduce the number of dimensions that exist within a dataset. The need 

for dimensionality reduction becomes apparent when you consider the 

wealth of data available to make narrow decisions:

• Mobile phones collect hundreds of data points 

including calls, texts, steps, calories burned, floors 

climbed, Internet usage, and so forth. What data is best 

for understanding phone usage?

• Brands on social media are collecting data on 

engagement and interactions such as comments, likes, 

followers, sentiment, and mood. What data is best for 

understanding attitudes toward health?

• Medical health records contain a wealth of information, 

but only some information is relevant in predicting 

disease risk or illness progression. What data is relevant 

to understanding future risk of disease or adverse 

event?

Dimensionality reduction refers to converting a dataset of many 

dimensions into fewer dimensions while concisely representing similar data.

The graph in Figure 4-18 shows the relationship between cm and 

inches for the dataset. This two-dimensional representation can be 

transformed succinctly into a one-dimensional representation, improving 

the visualization for understanding. N dimensions of data can be reduced 

to k dimensions where k < N. Dimensions of value can be identified, 

combined, or new dimensions created to represent the inherent 

relationships.
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Dimension reduction is extremely useful in machine learning tasks, 

with a plethora of benefits:

• Fewer dimensions result in quicker computations 

when compared to the original dataset.

• By default, dimension reduction algorithms reduce the 

space required for storage.

• Reducing data into less than three dimensions enables 

visualization and easier understanding.

• Redundant data is removed, which improves the 

performance of the machine learning model.

• Noise is removed, which improves model performance.

Figure 4-18. Dimension reduction
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 Dimension Reduction Techniques
Dimension reduction can be achieved in a variety of ways:

 Missing/Null Values
Missing data and null values are not a huge problem in isolation, but a 

growing number of empty values may help determine whether to drop a 

variable, ignore missing values, or compute a predicted value. Most data 

scientists support the dropping of variables if an attribute has upward of 

50% empty or null values. This threshold does vary.

 Low Variance
Data attributes that are very similar to one another do not carry much 

information. As a result, a lower variance threshold can be set and 

dimensions removed based on this. As variance is dependent on range, 

data normalization should take place first.

 High Correlation
Attributes with similar data trends are likely to carry similar information. 

Multicollinearity is the carrying of similar information that can reduce 

the performance of the model. Correlation between continuous data 

is determined by the Pearson’s product-moment coefficient, which is 

a measure of the linear correlation between two variables X and Y. For 

discrete data, the Pearson’s chi-square value determines how likely it is 

that any observed difference between sets arose by chance.
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 Random Forest Decision Trees
The use of random forest decision tree ensembles is useful for identifying 

key features. Random forest decision trees use a subset of features that 

can identify best split attributes. If an attribute is often selected as the best 

split node, it is likely to be a feature to keep. Decision trees are particularly 

useful for visualizing reductions also.

 Backward Feature Elimination
In Backward Feature Elimination, the model trains on n attributes. Starting 

with n attributes, at each iteration, the model is trained on n-1 attributes n 

number of times. The attribute that demonstrates the smallest increase in 

error rate is removed, and the algorithm performs another iteration on n-1 

attributes. At each iteration k, a model with n-k attributes is trained. This is 

computationally expensive.

 Forward Feature Construction
Forward Feature Construction is the opposite of Backward Feature 

Elimination. The model starts with one attribute and evaluates which 

of the attributes has the highest increase in performance. Much like it’s 

opposite Backward Feature Elimination, this method is computationally 

expensive unless operating in a lower range of dimensions.

 Principal Component Analysis (PCA)
Principal component analysis decreases the number of variables (axes) 

through transforming an original set of variables into a new set, or 

the principle components (see Figure 4-19). This process is iteratively 

calculating the maximum variance within features in the data. Each 
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component is orthogonal and a linear combination of original variables. 

Orthogonality indicates that the correlation between the components is zero.

Figure 4-19. PCA

The first principle component is the linear combination of the 

original dimension that has the maximum variance; and the nth principal 

component is the linear combination with the highest variance, subject to 

being orthogonal to the n – 1 principle components.

 Natural Language Processing (NLP)
Natural Language Processing or NLP pursues a defined set of problems 

within AI. NLP is defined as the ability of systems that can analyze, 

understand, and generate human language, including speech and text.
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NLP is an aspect of computational linguistics (studying linguistics 

using computer science) and is useful in the following:

• The retrieval of structured and unstructured data 

within a dataset. For example, searching clinical notes 

by keyword or phrase

• Social media monitoring

• Question answering: interpretation of natural language 

from humans to interact appropriately; for instance, as 

with virtual assistants or speech recognition software

• Analysis of a document to determine key findings

• Ability to parse and interpret a text to understand 

sentiment and mood

• Recognizing distinctions among diagnoses and 

relationships

• Image to text recognition; for instance, reading a sign or 

menu

• Machine translation: NLP is used in machine 

translation programs in which one human language is 

automatically translated into another human language

• Topic modeling—What is this document talking about?

• Understanding sentiment from social media or 

discussion posts

Interpreting natural language is fraught with challenges, as human 

language is naturally ambiguous—language, pronunciation, expression, 

and perception. Although there are rules with human language, they 

are often misunderstood and misused. NLP takes into consideration 
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the structure of language to derive meaning. Words make phrases; 

phrases make sentences; sentences make documents; and all of the 

aforementioned convey ideas.

NLP has a tool kit of text processing procedures including a range of 

data mining methods that can be used for model development. Due to 

the nature of unstructured data, NLP tasks can be expensive regarding 

computational resource and time. Neural networks and deep learning can 

also be used for NLP tasks.

With most data generated existing in the form of unstructured data, 

NLP is a powerful tool to interpret and understand natural language.

As with any aspect of computing, there are several terms to understand 

before proceeding:

• Tokenization: the process of converting a corpus of text 

into smaller units, or tokens; there are many algorithms 

available for breaking a text into tokens

• Tokens: words or entities present in the text

• Text object: a sentence or a phrase or a word or an 

article

• Stemming: a basic rule-based process of stripping 

suffixes (“ing,” “ly,” “es,” “s,” etc.) from words

• Stem: the text created after stemming

• Lemmatization: determining the root of a word from 

dictionaries and morphological analysis

• Morpheme: unit of meaning in a language

• Syntax: arranging symbols (words) to make a sentence; 

it involves determining the structural role of words in 

the sentence and phrases
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• Semantics: meaning of words and how to join words 

into meaningful phrases and sentences

• Pragmatics: using and understanding sentences 

in different situations and how interpretations are 

affected

In this section, I aim to introduce key concepts and methods of NLP 

and to demonstrate the techniques that can be applied to datasets to 

generate defined value.

 Getting Started with NLP
Giving an NLP model an input sentence and receiving a useful output 

requires several key components (see Figure 4-20).

Figure 4-20. How NLP works

 Preprocessing: Lexical Analysis
As with any dataset, a corpus of text that is not relevant to the context of 

data can be understood as noise. The first stage in NLP is to clean and 

standardize the input text, ensuring it is noise free and ready for analysis.

Over and above spelling correction and grammar correction, the 

following techniques are used to reduce noise.
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 Noise Removal
Noise removal involves preparing a dictionary of noisy tokens (i.e., words) 

and parsing the text, removing the tokens found in the noise dictionary. For 

instance, words like the, a, of, this, that, and so forth, would be removed.

 Lexicon Normalization
Follow, following, followed, follower are all variations of the word follow. 

Contextually, the words are similar. Lexicon normalization reduces 

dimensionality through stemming, which strips suffixes and prefixes, and 

lemmatization, which is a defined procedure that uses word structure and 

grammar relationships.

 Porter Stemmer
Python: NLTK; Method: PorterStemmer

The Porter stemmer algorithm is a popular and useful method to 

improve the effectiveness of information retrieval.[54] The algorithm 

works on the principle that many words in English share a common root. 

Stemming works on suffixes and removes common morphological and 

inflexional endings from words. Therefore, stemming allows one to reduce 

similar words into a common root form.

For example, take the text, “I felt troubled by the fact that my best 

friend was in trouble. Not only that, but the issues I had dealt with 

yesterday were still troubling me.”

The words troubled, trouble, and troubling all share the common root 

trouble. Therefore, according to the Porter stemmer algorithm, instead of 

counting all three words once, the stem trouble is counted thrice instead. 

The benefit of stemming is that common words can be clustered under 
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a common stem to provide a more accurate statistical representation of 

the number of occurrences of a certain word. However, a drawback of 

stemming is that the semantic meaning of the word may be lost.

Stemming and lemmatization are used to reduce inflectional forms and 

sometimes derivationally related forms of a word to a common base form.

 Object Standardization
A corpus of text may contain words that cannot be found in lexicon 

dictionaries. For example, on Twitter, someone may mention DM’ing 

someone, or another may like an RT of someone else’s tweet. Acronyms, 

hashtags, slang, and colloquialisms can be removed through prepared 

dictionaries or using regular expressions.

 Syntactic Analysis
To be analyzed, the text needs to be converted into features. The syntactic 

analysis of text involves analyzing sentences to understand relationships 

between words and assigning a syntactic structure to it. There are several 

algorithms for syntactic analysis; however, the Context-Free Grammar is 

most popular due to it being the simplest style of grammar and therefore 

widely used.

Take the sentence, “David saw a patient with uncontrolled type 2 

diabetes.”

Within the sentence, we need to identify the subject, objects, noise, 

and attributes to understand the sequence of words and its dependencies.
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 Dependency Parsing
Toolkit: NLTK; Method: StanfordDependencyParser

Sentences are composed of words in a structure. Basic grammar 

can determine the relationship or dependencies between a structure. 

Dependency parsing represents this in a tree structure and represents 

grammar and arrangement of words (see Figure 4-21).

Figure 4-21. Dependency parsing

Dependency grammar analyses asymmetrical binary relationships 

between tokens. The Stanford parser from NLTK is commonly used for this 

purpose.

Using the example in Figure 4-21, the parse tree determines the root of 

the word as “saw” and is then linked by subtrees. The subtrees are split by 

subject and object, with each subtree also showing dependencies.

 Part of Speech Tagging
Toolkit: NLTK; Method: word_tokenize

Part of speech tagging involves associating each word or token in a 

sentence with a part of speech (POS) tag. These tags are the basic English 

labels that you learned in primary school and determine nouns, verbs, 

adjectives, adverbs, numbers, and so on.

This is particularly useful for tasks such as building parse trees—

which can, in turn, be used for determining what something is, sentiment 

analysis, determining appropriate answers to questions, or understanding 

similar entities (see Figure 4-22).
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Part of speech tagging is the basis of the assists in several areas.

 Reducing Ambiguity

Some sentences have multiple meanings given the structure; for example, 

take the two sentences:

“I managed to read my book on the train.” “Can you please book my 

train tickets?”

Part of speech tagging identifies “book” as a noun in the first sentence 

and as a verb in the second sentence.

 Identifying Features

By identifying the types of speech alongside different contexts of a word, 

POS can distinguish between uses and creates stronger features for use.

 Normalization

POS tags are the foundation of normalization and lemmatization, to 

understand sentence structure and dependency.

Figure 4-22. Part of speech tagging
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 Stopword Removal

POS is useful in removing commonly used words, or stopwords, from a text.

 Semantic analysis
Semantic analysis is the most complex phase of NLP. It draws the exact 

meaning or the dictionary meaning from the text. Using knowledge about 

the structure of words and sentences among the context, the meaning of 

words, phrases, sentences, and texts is stipulated, and subsequently, also 

their purpose and consequences.

 Techniques Used Within NLP
Once data preprocessing, lexical, syntactical, and semantic analysis 

of corpus has taken place, we are required to transform text into 

mathematical representations for evaluation, comparison, and retrieval. 

For instance, searching a collection of patient profiles for users with 

“hypertension” should only bring out those with hypertension. This is 

achieved through transforming documents into the vector space model 

with scoring and term weighting essential for query ranking and search 

retrieval. Documents can be in the form of patient records, web pages, 

digitalized books, and so forth. The following algorithms are typical in the 

comparison and evaluation process.

 N-grams
Python: NLTK; Method: ngrams

N-grams are used in many NLP problems. If X = number of words in a 

given sentence K, the number of n-grams for sentence K would be

N grams X NK = - -( )1
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For example, if N = 2 (bigrams), the sentence “David reversed his 

metabolic syndrome” would result in n-grams of the following:

• David reversed

• Reversed his

• His metabolic

• Metabolic syndrome

N-grams preserve the sequences of N items from the text input. 

N-grams can have a different N value: unigrams for when N = 1, bigrams 

when N = 2, and trigrams when N = 3.

N-grams are used extensively for spelling correction, word 

decomposition, and summating texts.

 TF IDF Vectors
A document can be represented as a high-dimensional vector in the space 

of words. Each entry in the vector corresponds to a different term within 

the documents and the number of its occurrences. The TF-IDF (Term 

Frequency-Inverse Document Frequency) vector scheme assigns each 

term within the document a weight using the following formula:
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Each term’s weight (Wtd) is calculated by multiplying the frequency 

of the term (ftd) by the log of the total number of documents (D) divided 

by the number of documents the term occurs at least once in (NDt). 

The ordering of the terms may not necessarily be maintained. Weights 

for the terms gathered can then be used to determine documents with 

high frequencies of the specific term within them. A collection of TF-IDF 

vectors could be used to represent a user’s interest.
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Weights for the terms gathered can then be used to determine 

documents with high frequencies of the specific term within them.

 Latent Semantic Analysis
Where there is a corpus of a large number of documents, for each 

document d, the dimension of the vector representing each document can 

typically exceed several thousand. Latent semantic analysis relies on the 

fact that intuitively, terms in documents may often be related. For example, 

if document d contains the term sea, it will often contain the word beach.

Equivalently, if the vector representing d has a non-zero component 

in the entry for sea, it will also have a non-zero component in the beach 

component. If this kind of structure can be detected, relationships 

between words can be automatically learned from the data.

The word-document is represented by a matrix A, which is 

decomposed using Singular Value Decomposition to give the strength of 

the most significant correlations and their directions.

The decomposition of A allows one to discover the semantics of the 

document through correlations between terms and their significance 

within the document. The latent semantic analysis method can be applied 

to determine the context of a variety of materials to present a web user 

with results that were contextually relevant.

 Cosine Similarity
Python: SciPy; Method: cosine

The cosine similarity is a metric that measures the similarity between 

two vectors. Therefore, this could either be used to define the similarity 

between two documents, or a document and a query. The cosine similarity 

between two vectors can be defined as the following:

Sim u v
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×
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The similarity between two vectors is calculated as the inner product 

of the vectors, divided by the product of the lengths of the vectors in 

question. Intuitively, the greater the angle between two documents, the 

less similar they are. This holds for vectors in any N-dimensional space. 

Furthermore, the TF-IDF vector scheme can be integrated with the cosine 

similarity metric to determine the similarity between a search query and a 

plethora of documents:
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The similarity between a query q and document d is calculated as 

the product of the TF-IDF weights for the term in both the document 

and query summed over all the terms in both the query and document; 

this is divided by the product of the length of the document and length 

of the query. Practically, however, calculating Sim(q,d) would prove 

computationally expensive as the number of documents used grows.

 Naïve Bayesian Classifier
The Bayesian classifier is based on the Bayesian theorem and is 

particularly suited when the dimensionality of the inputs is high. Despite 

its simplicity, Naïve Bayes can often outperform more sophisticated 

classification methods. Given a specified threshold, this method can 

be used to classify the probability of whether a vector representing a 

document is of interest to a user. Given an attribute d, we can calculate 

whether the example belongs in class C with the following formula:

P C c D d
P D dC c P C c

P D dc= =( ) = = =( ) =( )
=( )

argmax
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Other techniques such as kNN and ANN can also be used to classify 

and retrieve information.

 Genetic Algorithms
Genetic algorithms (GA) are a fascinating topic within machine learning. 

GA take inspiration from evolution to minimize the error rate, attempting 

to mimic the function of chromosomes much like neural networks attempt 

to mimic the human brain.

Evolution is considered the optimal learning algorithm. In machine 

learning, the application of this is in models whereby several candidate 

answers (referred to as chromosomes or genotypes) are produced, and 

the cost function applied to all. In GA, a fitness function is defined that 

determines if the chromosomes fit enough to mate. Chromosomes furthest 

away from the optimal outcome are removed. Chromosomes are also 

subject to mutation. GA are a type of search and optimization learner and 

apply to discrete and continuous problems.

Chromosomes that are close to the optimal solution may be combined. 

The combination or mating of chromosomes is known as a crossover. The 

survival of the fittest approach identifies chromosomes that aim to express 

characteristics that adhere to natural selection—where the offspring is 

more optimal than the parent.

Mutation helps to overcome overfitting. It is a random process to get 

over local optima and find the global optimum. Mutation helps to ensure 

that child chromosomes are different from the parents’ and continue 

evolution.

The degree in which chromosomes mutate and mate are parameters 

that can be controlled or left to the model to learn.
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GA have varied applications:

• Detection of blood vessels is ophthalmology imaging

• Detecting the structure of RNA

• Financial modeling

• Routing vehicles

A group of chromosomes is referred to as a population. Although 

it stays at a defined, constant size, it usually evolves to better average 

predictions over the course of generations or time.

The evaluation of a chromosome, c, is calculated as its evaluation 

function value divided by the average of the generation, represented as the 

following:

fitness(c) = g(c)/(average of g over the entire population)

John Holland invented the GA approach (see Figure 4-23) in the early 

1970s.[55] The automation of chromosome selection is known as genetic 

programming.

 Best Practices and Considerations
Mastering the art of machine learning takes time and experience. However, 

there are several areas worthy of consideration, particularly for beginners 

to machine learning, to ensure the best use of time and optimal model 

efficiency.

 Good Data Management
With the volume and complexity of data used in machine learning tasks, 

proper data management is paramount. Not only does this involve having 

the processes, policies, procedures, permissions, and certifications 
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Figure 4-23. Basic structure of a genetic algorithm

required for data management, it consists of the managing and 

transformation of training data to learn an optimal model.

 Establish a Performance Baseline
It is crucial to have a baseline to measure the performance of your 

algorithm against other iterations and model types. As there is no one 

perfect algorithm for every problem, attempt many algorithms to identify 

the relative performance of your models.

 Spend Time Cleaning Your Data
The time required to train a machine learning model varies significantly 

between algorithms. The accuracy of data and time spent on training the 

model positively influence model accuracy. Take time to clean your data to 

ensure predictions are as robust as possible.
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It is often the case that not all of the input variables impact the 

dependent variable or outcome. Ensure the variables used by the model 

do not include those that are irrelevant.

 Training Time
If the dimensionality of data is large and computing power limited, 

training time will be extensive. When time is short, it is useful to consider 

machine learning algorithms that do not require substantial training. For 

example, neural networks may not be appropriate for time-limited tasks.

 Choosing an Appropriate Model
Some machine learning algorithms make particular assumptions about 

the structure of data or the desired outputs. For this reason, it is helpful 

to consider the model choice and whether it is an appropriate approach. 

Utilizing the right model has a plethora of benefits, including more 

accurate predictions, faster training times, and more useful results.

Some machine learning models are resistant to outliers or 

nonparametric tests. For example, decision-tree-based approaches 

typically classify a node into two based on a threshold. Data outliers are 

therefore less impactful in tree-based approaches.

Evaluating a range of models is a useful approach to machine learning. 

Occam’s Razor is typically applied to choosing the model of choice. 

Occam’s Razor seeks to identify the most straightforward model that 

achieves the desired output given all else being equal.

 Choosing Appropriate Variables
Although more data is ordinarily invited in machine learning problems, 

it is typically preferable to work with fewer predictor variables for many 

reasons.
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 Redundancy
Increasing the number of variables within a training dataset increases the 

chances of models learning hidden relationships between them. It is vital 

to identify unnecessary variables and only use nonredundant predictor 

variables within models. A model that is learning redundant connections 

will impact model accuracy.

 Overfitting
Even if there are no relationships among predictor variables within a 

model, it is still beneficial to use fewer variables. Complex models, or 

those that use a high number of predictor variables, typically suffer from 

overfitting. As a result, models perform well on training datasets but are 

less accurate on validation and real-world settings, as they learn the error 

within the data (i.e., the noise) rather than the signal, or relationships, 

between variables.

 Productivity
Even if all of the variables within a sophisticated machine learning 

model are relevant, there is a practical impact in using a large number of 

predictor variables that can affect productivity. Practical considerations 

include the amount of data available, the subsequent effect on storage, 

computing resources, associated costs, time allocated for the project, 

and the time required for learning and validation. Predictor variables can 

be identified through feature selection, or transformed through feature 

extraction. SVMs are useful in cases of increased data dimensionality.

The Pareto principle (or the 80/20 rule or law of a vital few) is a useful 

measure to use in machine learning projects. The Pareto principle states 

that approximately 80% of the effects come from 20% of the causes. Using 
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the Pareto principle, focusing on the 20% most significant predictor 

variables should facilitate the building of relatively successful models 

within a reasonable time.

 Understandability
Models with fewer predictor variables are easier to visualize, understand, 

and explain. A key aspect of a successful machine learning project is that 

all stakeholders can comprehend the model. This often requires data 

scientists trading off. As the result of reducing the number of predictor 

variables, there is a chance there may be a reduction in the success of a 

machine learning model. However, this concurrently makes the model 

easier to interpret and understand. The usefulness of this approach is only 

realized toward the end of a project when it comes to sharing not only the 

performance of a model but also how it works. This is particularly relevant 

in healthcare, as there are concerns about using black-box models.

 Accuracy
Any machine learning model aims to generalize well. Depending on 

the use case, an approximation may be more beneficial than a precise, 

accurate output. Through approximating values, models tend to avoid 

overfitting and reduce the amount of time spent on processing.

 Impact of False Negatives
When evaluating the impact of a model before deployment into a live 

environment, consider the impact of false negatives. For example, take a 

predictive model that classifies the risk of breast cancer. A false positive 

would mean that a patient is informed they have breast cancer when 
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they do not, which should be identified later in the treatment pathway. 

However, a false negative would mean a patient with breast cancer would 

not be notified—which is potentially far worse and costly.

 Linearity
Many machine learning algorithms assume that relationships are linear: 

in other words, that classes can be separated by a straight line of best 

fit or its higher dimensional representation. There are instances where 

relationships are not linear. Relying on a linear classification algorithm 

where there is a nonlinear class boundary will result in low accuracy.

Linear regression, for example, assumes both input and output 

variables do not contain noise. It is vital to expose the signal within data to 

ensure models learn the signal or the correct relationships within the data. 

It is advantageous to identify and remove outliers for the output variable in 

particular to reduce the chances of learning the noise.

Data with a nonlinear trend may require transforming to make the 

relationship linear: for instance, log-transforming data where there is an 

exponential relationship.

Linear algorithms are typically the first methods attempted in machine 

learning scenarios. As a result of linearity, algorithms are simple and quick 

to train.

 Parameters
Each machine learning model is subject to parameters and 

hyperparameters. The time and resource required to train a model 

increases as the number of parameters does. An algorithm’s parameter is 

a variable that is utilized by the model where the value can be estimated 

from the dataset.
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An algorithm’s hyperparameter is a variable that is external to the 

model and used to estimate parameters. A hyperparameter’s value cannot 

be estimated from data. Instead, it is set by the data scientist, randomly or 

otherwise, or through the use of heuristics.

 Ensembles
In specific machine learning problems, it may prove more useful to 

group classifiers together using the techniques of voting, weighting, and 

combination to identify the most accurate classifier possible. Ensemble 

learners are very useful in this aspect.

 Use Case: Type 2 Diabetes
Type 2 diabetes is one of the most significant health and economic 

burdens facing the global population, with 1 in 6 people dying from 

diabetes or its related complications every 6 seconds.[56]

There are many factors involved in the progression of the disease, 

which, if tackled, can help to prevent its progression through targeted 

treatment profiling, leading to lower patient morbidity and mortality 

rate. Data in the form of health biomarkers—typically blood glucose, 

HbA1c, fasting blood glucose, insulin sensitivity, and ketones—are used to 

understand and monitor disease burden and response to treatments.

As a result of the tremendous burden of type 2 diabetes, there has 

been a substantial investment in developing intelligent models within this 

area, with much of the focus on diagnosing, predicting, and managing the 

condition through machine learning and data mining.

Many machine learning techniques have been applied to type 2 

diabetes datasets. Traditional techniques, ensemble techniques, and 

unsupervised learning—in particular, association rule mining—has been 

used to identify prediction models with optimal accuracy.
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Farideh Bagherzadeh-Khiabani et al. used the clinical dataset from 

803 female prediabetics consisting of 55 features collected over a decade to 

develop multiple models for predicting type 2 diabetes risk.[57] The study 

developed a logistic model, demonstrating wrapper models, or models that 

consider a subset of features, improve the performance of clinical prediction 

models. This was developed into an R program to visualize output.

Similarly, Georgia El et al. used random forest decision trees on many 

features collected from 15 people with type 1 diabetes to predict short- 

term subcutaneous glucose concentrations.[58] Glucose concentration 

was predicted through the use of SVMs. The study concluded that the 

inclusion of two biomarker features—8-hydroxy-2-deoxyguanosine, 

an oxidative stress marker, and interleukin-6—improved classification 

accuracy.

Duygu Çalişir et al. developed an automatic diagnosis system for type 

2 diabetes with a classification accuracy of almost 90% through the use 

of linear discriminant analysis and SVM classifiers.[59] Latent Dirichlet 

Allocation (LDA) was used to distinguish features between healthy 

patients and patients with type 2 diabetes, which was then in turn used 

as the input for the SVM classifier. A tertiary stage evaluated sensitivity, 

classification, and confusion before determining the output.

Razavian et al. conducted a more extensive study, determining that type 

2 diabetes prediction models could be accurately derived from population-

scale datasets.[60] Over 42,000 variables were collected from over 4 million 

patients between 2005 and 2009. Machine learning was used to determine 

relevant features, which tailed out at around 900. Novel risk factors for 

type 2 diabetes were identified, such as chronic liver disease, high alanine 

aminotransferase, esophageal reflux, and history of acute bronchitis.

Machine learning has likewise been applied to diagnosing the risk 

of other diseases related to diabetes. Lagani et al. identified the least set 

of clinical variables with the best predictive accuracy for complications 

such as cardiovascular disease (heart disease or stroke), hypoglycemia, 

ketoacidosis, proteinuria, neuropathy, and retinopathy.[61]
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Huang et al. used decision-tree-based prediction models on 

identifying diabetic nephropathy in patients.[62] Leung et al. compared 

several methods: partial least square regression, regression trees, random 

forest decision trees, naïve Bayes, neural networks, and SVMs on genetic 

and clinical features.[63] Patient age, years of diagnosis, blood pressure, 

genetic polymorphisms of uteroglobin, and lipid metabolism arose as the 

most efficient predictors of type 2 diabetes.

Summers et al. developed a predictive model utilizing a dataset 

consisting of over 120 features to identify comorbid depression and 

diabetes-related distress. Summers et al. explored several techniques 

including random forest decision trees, SVMs, naïve Bayes, and neural 

networks. Patient age and employment status were defined as the variables 

most likely to affect predictive accuracy.[64]

Unsupervised learning has mainly concentrated on association rule 

mining, identifying associations between risk factors in people with 

diabetes. Simon et al. proposed an extension to association rule mining 

labeled Survival Association Rule Mining, which included survival 

outcomes, and made adjustments for confounding variables and  

dosage effects.
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CHAPTER 5

Evaluating Learning 
for Intelligence

“Intelligence is the ability to adapt to change”

—Stephen Hawking

As a field, machine learning is still in its infancy. Advanced machine 

learning has only been explored over the last 25 years, which has fueled 

data science as a profession. As a result, the data science industry 

is still in a phase of wonderment at the endless potential of AI and 

machine learning. With this comes both excitement and confusion—

and an industry that is gathering knowledge, experience, and first-time 

problems.

Typically, the most laborious tasks within a machine learning project 

are identifying the appropriate model and engineering features, which 

make a substantial difference to the output of the model. In fact, the 

features chosen can often have more impact on the quality of a model 

compared to the model choice itself. Therefore, it is important to evaluate 

the learning algorithm that will determine the model’s intelligence to 

predict the output of an unknown sample. This is usually done using 

various metrics, which are discussed further.
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 Model Development and Workflow
To successfully deploy a machine learning model, there are several stages 

of development and evaluation that take place, as illustrated in Figure 5-1.

Figure 5-1. Model development and work flow

The first stage is the prototype phase. During this phase, a prototype is 

created through testing various models on historical data to determine the 

best model. Hyperparameter tuning, as discussed later in this chapter, is a 

requirement of model training. Once the best prototype model is chosen, 

the model is tested and validated. Validating a model requires splitting 

datasets into training, testing, and validation sets as discussed in Chapter 3.  

Consider the fact that there is no such thing as a random dataset and 

instead the randomness applies to the splitting of the dataset. Be aware of 

biases that may appear in the data. Once the model has been successfully 

validated, it is deployed to production. The model is then usually 

evaluated by one (or several) performance metrics.

There are two ways of evaluating a machine learning model: offline 

evaluation and online (or live) evaluation.
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 Why Are There Two Approaches to  
Evaluating a Model?
A deployed machine learning model consumes data from two sources: 

historical data (or the data that is used as the experience to be learned 

from) and live data. Many machine learning models assume stationary 

distribution data—that the data distribution is constant over time. 

However, this is atypical of real life, as distributions of data often change 

over time—known as a distribution shift. For instance, consider a system 

that predicts the side effects of medications to patients based on their 

health profile. Medication side effects may change based on population 

factors such as ethnicity, disease profile, territory, medication popularity, 

and new medications. The distribution of relevant side effects based 

on patient data can vary quickly over time, and hence it is essential 

for a model to detect a shift in distribution and accordingly evolve the 

model. The method in which this is typically assessed is through the 

performance of the model based on live data, evaluated through the 

validation metric used in the testing and validation of the model on 

historical data.

Model performance that is similar to or within a threshold of 

permissibility when evaluated on live data is deemed as a model that 

continues to fit the data. Degradation of model performance indicates that 

the model does not fit the data and requires retraining.

Offline evaluation measures the model based on metrics learned and 

evaluated from the historical, stationary, distributed dataset. Metrics 

such as accuracy and precision-recall are typically used within the offline 

training stage. Offline evaluation techniques include the hold-back 

method and n-fold cross-validation.
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Online evaluation refers to the evaluation of metrics once the model 

is deployed. The key takeaway is that these metrics may differ from the 

metrics used to evaluate performance when the model is deployed live. 

For instance, a model that is learning on new pharmacological treatments 

may seek to be as precise as possible in training and validation; but when 

placed online, it may need to consider business goals such as budget or 

treatment value when deployed. Online evaluation, particularly in the 

digital age, can support multivariate testing to understand best-performing 

models.

Feedback loops are key to ensuring systems are performing as 

intended and help to understand the model in the context of use better. 

This can be performed by a human agent or automated through a 

contextually intelligent agent or users of the model.

It is important that the evaluation of a machine learning model is 

based on a statistically independent dataset and not on the dataset it 

is trained on. This is because the evaluation of the training dataset is 

optimistic about the model’s true performance as it adapts to the dataset. 

By evaluating the model with previously unseen data, there is a better 

estimate of the generalization error. New data can be hard to find; hence it 

is important to be able to have new, unseen data from the current dataset. 

Methods such as n-fold cross-validation discussed in Chapter 3 are useful 

techniques for this purpose. Often the data used is more important than 

the algorithm choice; and the better the features used, the greater the 

performance of the model.

The evaluation metrics discussed can be found in the metrics package 

for R and scikit-learn for Python.

 Evaluation Metrics
There are a plethora of evaluation metrics for machine learning problems. 

Metrics exist for the variety of machine learning tasks—classification, 

regression, clustering, association rule mining, NLP, and so on.
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 Classification

Classification problems seek to give a label or classification to an input. 

There are several methods by which to measure performance, including 

accuracy, precision-recall, confusion matrices, log-loss (logarithmic loss), 

and AUC (area under the curve).

Accuracy

Accuracy is the simplest technique used in identifying whether a model 

is making correct predictions. It is calculated as a percentage of correct 

prediction over the total predictions made.

Accuracy = number of correct predictions/number of total 

predictions

Confusion matrix

Accuracy is a general metric that does not consider the division between 

classes. Therefore, it does not consider misclassification or the associated 

penalty with misclassification. For instance, a medical misdiagnosis that 

is a false positive (e.g., take a patient diagnosed with breast cancer when 

they do not have it) has substantially different consequences compared 

to a false negative, whereby a patient is told that they do not have breast 

cancer when in fact they do. A confusion matrix breaks down the correct 

and incorrect classifications made by the model and attributes them to the 

appropriate label.

• True positive: Where the actual class is yes, and the 

value of the predicted class is also yes.

• False positive: Actual class is no, and predicted class 

is yes
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• True negative: The value of the actual class is no, and 

the value of the predicted class is no

• False negative: When the actual class value is yes, but 

predicted class is no

Take an example whereby a model predicts whether a patient has 

breast cancer or not based on 50 example inputs from the test dataset with 

an equal distribution between positive and negative labeled examples. The 

confusion matrix would be as in Table 5-1.

Table 5-1. Confusion matrix

Prediction: Positive Prediction: Negative

labeled positive 20 5

labeled negative 15 10

From the confusion matrix, it is determined that the positive class 

has greater accuracy than the negative class. The accuracy of the positive 

classification is 20/25 = 80%. The negative class has an accuracy of 10/25 

= 40%. Both metrics differ from the overall accuracy of the model, which 

would be determined as (20 + 10)/50 = 60%. It is apparent how a confusion 

matrix adds more detail to the overall accuracy of a machine learning 

model.

As a result, accuracy can be rewritten as the following:

Accuracy = (correctly predicted observation)/(total observation) = 

(TP + TN)/(TP + TN + FP + FN)

Per-class accuracy

Per-class accuracy is an extension of accuracy that takes into account 

the accuracy of each class. As a result, the preceding example has a 

per- class accuracy of (80% + 40%)/2 = 60%. Per-class accuracy is useful 
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in distorted problems where there are a larger number of examples 

within one particular class compared to another. The class with greater 

examples dominates the calculation, and therefore accuracy alone may 

not suffice for the nature of your model; thus it is useful to evaluate 

per-class accuracy also.

Logarithmic loss

Logarithmic loss (or log-loss for short) is used for problems where a 

continuous probability is predicted rather than a class label. Log-loss 

provides a probabilistic measure of the confidence of the accuracy 

and considers the entropy between the distribution of true labels and 

predictions.

For a binary classification problem, the logarithmic loss would be 

calculated as follows:

Log-loss = - + -( ) -( )
=
å1

1 1
1N
y p y p

i

N

i i i ilog log

Where Pi is the probability of the ith data point belonging to a class and 

yi the true label (either 0 or 1).

Area Under the Curve (AUC)

The AUC plots the rate of true positives to the rate of false positives. The 

AUC enables the visualization of the sensitivity and specificity of the 

classifier. It highlights how many correct positive classifications can be 

gained allowing for false positives.

The curve is known as the receiver operating characteristic curve, or 

ROC as shown in Figure 5-2. A high AUC or greater space underneath the 

curve is good, and a smaller area under the curve (or less space under the 

curve) is undesirable. In Figure 5-2, test A has better AUC as compared to 

test B, as the AUC for test A is larger than for test B. The ROC visualizes the 

trade-off between specificity and sensitivity of the model.
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Precision, recall, specificity, and F-measure

Precision and recall are two metrics used together to evaluate model 

performance. Precision evaluates how many items are truly relevant 

compared to the total number of items correctly classified. Recall evaluates 

how many items are predicted to be relevant by the model from the items 

that are relevant.

• Precision: (correctly predicted Positive)/(total 

predicted Positive) = TP/TP + FP

• Recall: (correctly predicted Positive)/(total correct 

Positive observation) = TP/TP + FN

Figure 5-2. ROC curve
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Specificity refers to how well the model performs at returning incorrect 

classifications and is calculated as in Figure 5-3.

• Specificity: (correctly predicted Negative)/(total 

Negative observation) = TN/TN + FP

Figure 5-3. Specificity classification diagram

F-measure goes beyond the arithmetic mean and calculates the 

harmonic mean of precision and recall:

F

p r

pr

p r
=

+
æ

è
ç

ö

ø
÷

=
+

1

1
2

1 1

2

Where p denotes precision and r denotes recall.

 Regression

Regression machine learning models output continuous variables, and 

root-mean-squared error (RMSE) is the most commonly used evaluation 

metric for these problems.
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RMSE

RMSE calculates the square root of the sum of the average distance 

between predicted and actual values. This can also be understood as the 

average Euclidean distance between the true value and predicted value 

vectors. A criticism of RMSE is that it is sensitive to outliers.

RMSE
y y

i i i=
-( )å ˆ

,

2

2

where yi denotes the actual value and ŷi  denotes predicted value.

Percentiles of errors

Percentiles (or quantiles) of error are more robust as a result of being less 

sensitive to outliers. Real-world data is likely to contain outliers, and thus 

it is often useful to look at the median absolute percentage error (MAPE) 

rather than the mean.

MAPE median y y yi i i= -( ) ( )( )|| ||ˆ / ,

where yi denotes the actual value and ŷi  denotes predicted value.

The MAPE is less affected by outliers by using the median of the 

dataset. A threshold or percentage difference for predictions can be 

set for a given problem to give an understanding of the precision of 

the regression estimate. The threshold depends on the nature of the 

problem.
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 Skewed Datasets, Anomalies, and  
Rare Data
An experienced data scientist treats all data with suspicion. Data can be 

inconsistent; and as a result, skewed datasets, imbalanced class examples, 

and outliers can all significantly affect the performance of a model. 

Having more examples within one class compared to another can lead 

to an underperforming model. Furthermore, outliers or data anomalies 

can further skew performance evaluation metrics. The effect of large 

outliers can be mitigated using percentiles of error. In practice, good data 

cleansing, removal of outliers, and normalization of variables can reduce 

the sensitivity to outliers.

 Parameters and Hyperparameters
Hyperparameters and parameters are often used interchangeably, yet 

there is a difference between the two. Machine learning models can be 

understood as mathematical models that represent the relationship 

between aspects of data.

Model parameters are properties of the training dataset that are 

learned and adjusted during training by the machine learning model. 

Model parameters differ for each model, dataset properties, and the task 

at hand. For instance, in the case of an NLP predictor that output the 

sophistication of a corpus of text, parameters such as word frequency, 

sentence length, and noun or verb distribution per sentence would be 

considered model parameters.

Model hyperparameters are parameters to the model building 

process that are not learned during training. Hyperparameters can 

make a substantial difference to the performance of a machine 

learning model. Hyperparameters define the model architecture 

and effect the capacity of the model, influencing model flexibility. 
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Hyperparameters can also be provided to loss optimization algorithms 

during the training process. Optimal setting of hyperparameters can 

have a significant effect on predictions and help prevent a model from 

overfitting. Optimal hyperparameters often differ between datasets  

and models.

In the case of a neural network, for example, hyperparameters would 

include the number and size of hidden layers, weighting, learning rate, and 

so forth. Decision trees hyperparameters would include the desired depth 

and number of leaves in the tree. Hyperparameters with a support vector 

machine would include a misclassification penalty term.

 Tuning Hyperparameters
Hyperparameter tuning or optimization is the task of selecting a set of 

optimal hyperparameters for a machine learning model. Optimized 

hyperparameters values maximize a model’s predictive accuracy. 

Hyperparameters are optimized through running training a model, 

assessing the aggregate accuracy, and appropriately adjusting the 

hyperparameters. Through trialing a variety of hyperparameter values, the 

best hyperparameters for the problem are determined, which improves 

overall model accuracy.

 Hyperparameter Tuning Algorithms
Hyperparameter tuning is like training a machine learning model. The 

task at hand is one of optimization. Model parameters can be expressed 

as a loss function, whereas hyperparameters cannot be expressed as such, 

as it depends entirely on the model training process. There are several 

approaches to hyperparameter tuning, with the most common being grid 

search and random search.
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 Grid Search
The grid search is a simple, effective, yet resource expensive 

hyperparameter optimization technique that evaluates a grid of 

hyperparameters. The method evaluates each hyperparameter and 

determines the winner. For example, if the hyperparameter were the 

number of leaves in a decision tree, which could be anywhere from n = 2 to 

100, grid search would evaluate each value of n (i.e., points on the grid) to 

determine the most effective hyperparameter.

It is often a case of guessing where to start with hyperparameters, 

including minimum and maximum values. The approach is typical of trial 

and error, whereby if the optimal value lies toward either maximum or 

minimum, the grid would be expanded in the appropriate direction in an 

attempt to further optimize the model’s hyperparameters.

 Random Search
Random search is a variant of grid search that evaluates a random sample 

of grid points. Computationally, this is far less expensive than a standard 

grid search. Although at first glance it would appear that this is not as 

useful in finding optimal hyperparameters, Bergstra et al. demonstrated 

that in a surprising number of instances, a random search performed 

roughly as well as grid search.[65] The simplicity and better-than-expected 

performance of a random search means that it is often chosen over grid 

search. Both grid search and random search are parallelizable.

More intelligent hyperparameter tuning algorithms are available that 

are computationally expensive as the result of evaluating which samples 

to try next. These algorithms often have hyperparameters of their own. 

Bayesian optimization, random forest smart tuning, and derivative-free 

optimization are three examples of such algorithms.
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 Multivariate Testing
Multivariate testing is an extremely useful method of determining 

which model is best for the particular problem at hand. Multivariate 

testing is known as statistical hypothesis testing and determines the 

difference between a null hypothesis and alternative hypothesis. The 

null hypothesis is defined as the new model not affecting the average 

value of the performance metric; whereas the alternate hypothesis is 

that the new model does change the average value of the performance 

metric.

Multivariate testing compares similar models to understand which is 

performing best or compares a new model against an older, legacy model. 

The respective performance metrics are compared, and a decision is made 

on which model to proceed with.

The process of testing is as follows:

 1. Split the population into randomized control and 

experimentation groups.

 2. Record the behavior of the populations on the 

proposed hypotheses.

 3. Compute the performance metrics and associated 

p-values.

 4. Decide on which model to proceed with.

Although the process seems relatively simple, there are a few key 

aspects for consideration.

 Which Metric Should I Use for Evaluation?
Choosing the appropriate metric to evaluate your model depends on the 

use case. Consider the impact of false positives, false negatives, and the 

consequences of such predictions. Furthermore, if a model is attempting 

Chapter 5  evaluating learning for intelligenCe



203

to predict an event that only happens 0.001% of the time, an accuracy of 

99.999% can be reported but not confirmed. Build the model to cater to the 

appropriate metrics.

One approach is to repeat the experiment, thus performing repeat 

evaluations. Although not a fail-safe, this reduces the change of illusionary 

results. If there is indeed change between the null and alternate 

hypothesis, the difference will be confirmed.

 Correlation Does Not Equal Causation
The phrase correlation does not equal causation is used to stress that a 

correlation between two variables does not suggest that one causes the 

other. Correlation refers to the size and direction of a relationship between 

two or more variables.

Causation, also known as cause and effect, emphasizes that the 

occurrence of one event is related to the presence of another event. It may 

be tempting to assume that one variable causes the other; however, in 

models with several features, there may be hidden factors that cause both 

variables to move in tandem.

For instance, smoking tobacco is a cause that increases the risk 

of developing a variety of cancers. However, it may be correlated with 

alcoholism, but it does not cause alcoholism.

 What Amount of Change Counts as  
Real Change?
Defining the amount of change required before the null hypothesis 

is rejected once again depends on the use case. Specify a value at the 

beginning of the project that would be satisfactory and adhere to it.
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 Types of Tests, Statistical Power, and Effect Size
There are two main types of tests—one-tailed and two-tailed tests. One- 

tailed tests evaluate whether the new model is better than the original. 

However, it does not specify whether the model is worse than the baseline. 

One-tailed tests are thus inherently biased. With two-tailed tests, the model is 

tested for the possibility of change in two directions—positive and negative.

Statistical power refers to the probability that the difference detected 

during the testing reflects a real-world difference.

Effect size determines the difference between two groups through 

evaluating the standardized mean difference between two sets. Effect size 

is calculated as the following:

Effect size = ((mean of experiment group) – (mean of control group))/

standard deviation

 Checking the Distribution of Your Metric
Many multivariate tests use the t-test to analyze the statistical difference 

between means. The t value evaluates the size of the difference relative to 

the variation in your sample data. However, the t-test makes assumptions 

that are not necessarily satisfied by all metrics. For instance, the t-test 

assumes both sets have a normal, or Gaussian, distribution.

If the distribution does not appear to be Gaussian, select a 

nonparametric test that does not make assumptions about a Gaussian 

distribution, such as the Wilcoxon–Mann–Whitney test.

 Determining the Appropriate p Value
Statistically speaking, the p value is a calculation used in hypothesis 

testing that represents the strength of the evidence. The p value measures 

the statistical significance, or probability, that a difference would arise 

Chapter 5  evaluating learning for intelligenCe



205

by chance given there was no real difference between two populations. It 

provides the evidence against the null hypothesis and is a useful metric for 

stakeholders to draw conclusions from.

A p value lies between 0 and 1, and is interpreted as follows:[66]

• a p value of ≤ 0.05 indicates strong evidence against the 

null hypothesis, thus rejecting the null hypothesis

• a p value of > 0.05 indicates weak evidence against the 

null hypothesis, hence maintaining the null hypothesis

• a p value near 0.05 is considered marginal and could 

swing either way

The smaller the p value, the smaller the probability that the results are 

down to chance.

 How Many Observations Are Required?
The quantity of observations required is determined by the statistical 

power demanded by the project. Ideally, this should be determined at the 

beginning of the project.

 How Long to Run a Multivariate Test?
The duration of time required for your multivariate testing is ideally the 

amount of time required to capture enough observations to meet the 

defined statistical power. It is often useful to run tests over time to capture 

a representative, variable sample.

When determining the duration of your testing phase, consider the 

novelty effect, which describes how user reactions in the short term are 

not representative of the long-term reactions. For instance, whenever 

Facebook updates their news feed layout or design, there is an uproar. 
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However, this soon subsides once the novelty effect has worn off. 

Therefore, it is useful to run your experiment for long enough to overcome 

this bias. Running multivariate tests for long periods of time are typically 

not a problem in model optimization.

 Data Variance
The control and experimentation sets could be biased as the result of not 

being split at random. This may result in biases in the sample data. If this 

is the case, other tests can be used, such as Welch’s t-test, which does not 

assume equal variance.

 Spotting Distribution Drift
It is key to measure ongoing performance of your machine learning model 

once deployed. Data drifts and system development require the model 

to be confirmed against the baseline. Typically, this involves monitoring 

the offline performance, or validation metric, against data from the live, 

deployed model. If there is a sizeable change in the validation metric, this 

highlights the need to revise the model through training on new data. This 

can be done manually or automated to ensure consistent reporting and 

confidence in the model.

 Keep a Note of Model Changes
Keep a log of all changes to your machine learning model with notes 

on changes. Not only does this serve as a change log for stakeholders, it 

provides a physical record of how the system has changed over time.  

The use of versioning software within a development enviornment (test/

staging to live deployment) will enable software changes to automatically be 

noted. Versioning software provides a form of technical governance and can 

be used to deploy software with extensive rollback and backup facilities.
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CHAPTER 6

Ethics of Intelligence
“People worry that computers will get too smart and take over 
the world, but the real problem is that they're too stupid and 
they've already taken over the world.”

—Pedro Domingos

From supermarket checkouts to airport check-ins and digital healthcare to 

Internet banking, the use of data and AI for decision-making is ubiquitous. 

There has been an astronomic growth in data availability over the last two 

decades, fueled by, first, connectivity, and now the Internet of Things. 

Traditional data science teams focus on the use of data for the creation, 

implementation, validation, and evaluation of machine learning models 

that can be for predictive analytics.

In the past decade, there has been a wealth of data-driven AI and 

technological advance in healthcare, including the following:

• Noninvasive blood glucose levels: There have been many 

advances in noninvasive blood glucose management. 

Google developed a contact lens that determines the 

user’s blood glucose levels in 2016. French company 

PKvitality developed a small wristwatch that determines 

the level of glucose in the blood, and there have been 

advances in determining blood glucose levels through 

using far-infrared signals.[67]
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• Artificial pancreas: As a combination of systems, 

the artificial pancreas uses two devices. The first 

device measures blood glucose using a sensor and 

communicates with a secondary device (or patch), 

which administers insulin to the patient. The insulin 

delivery system can adjust the insulin dosage according 

to the blood glucose levels.[68]

• Bioprinting of skin constructs: 3-D printing has been 

used to reproduce blood vessels and skin cells to 

facilitate wound healing for burn patients.[69]

• Digital peer support: Peer support communities such 

as Diabetes.co.uk enable peer-to-peer support have 

demonstrated in research studies the ability to improve 

qualitative and quantitative health outcomes.[70]

• Foot ulcer detection: Concerns such as foot ulceration, 

bruising, and wider diabetic foot concerns can be 

increasingly detected through machine learning to 

expedite ulceration detection, prevent amputations, 

determine effective treatments, and improve healing 

times.

• Open source data sharing:[71] Data repositories 

and public APIs have enabled data sharing between 

systems. Historically conservative firms are now 

embracing open source analytical, AI, and data 

management software. Within many organizations, 

employees are actively discouraged, or given 

autonomy on whether to use proprietary tools. Cost 

and performance are drivers toward open source data, 

mainly as open data sources have become more robust 
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and accepted. The adoption is also driven by the latest 

generation of data scientists and university graduates 

aware of the safety and capabilities of open source data.

Novel solutions to problems developed through machine learning 

are themselves leading to questions of morality and ethics. Currently, 

governance is moving at the pace of the industry itself. There are many 

scenarios within AI for which there are no precedents, regulations, or laws. 

As a result, it is paramount to consider the ethical and moral implications 

of creating intelligent systems.

The World Health Organization (WHO) reports that the prevalence of 

chronic disease will rise to 57% of the global population by 2050.[72]  

Unfortunately, the WHO also reports that there is a global, growing 

shortage of healthcare workers, which by 2035 will rise to 12.9 million.[73]  

Lack of professionals to provide healthcare services paints a stark 

image of the future with grave consequences for humanity. Healthcare 

professional shortages are being offset through AI, digital interventions, 

IoT, and other digital technologies that cannot only replace manual and 

cognitive working tasks but can also improve the reach, precision, and 

availability of healthcare. At the same time, advancements in the detection 

and diagnosis of diseases, genomics, pharmacology, stem cell and organ 

therapy, digital healthcare, and robotic surgery are expected to minimize 

the cost of treating illness and disease. As AI penetrates humanity’s day- 

to- day activities, philosophical, moral, ethical, and legal questions are 

raised. This is amplified in healthcare, where clinical decisions can mean 

the difference between life and death. Even if AI can aid diagnosis of 

conditions or predict future mortality risk, will humans ever prefer an AI’s 

advice over their doctor? As humankind becomes accustomed to living 

side-by-side to intelligent systems, there are a host of hurdles to overcome.
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 What Is Ethics?
Ethics or moral philosophy refers to the moral codes of conduct (or set of 

moral principles) that shape the decisions people make and their conduct. 

Morality refers to the principles that distinguish between good/right or bad/

wrong behavior. Ethics in the workplace, for example, is often conveyed 

through professional codes of conduct for which employees must abide.

 What Is Data Science Ethics?
Data science ethics is a branch of ethics that is concerned with privacy, 

decision-making, and data sharing.

Data science ethics comprises three main strands:

• Ethics of data

This area of data science ethics focuses on the generation, 

collection, use, ownership, security, and transfer of data.

• Ethics of intelligence

This area of data science ethics covers the output or outcomes 

from predictive analytics that data is used to develop.

• Ethics of practices[74]

The ethics of practices was proposed by Floridi and 

Taddeo, referring to the morality of innovation and 

systems to guide emerging concerns.

 Data Ethics
More smartphones exist in the world than people—and phones, tablets, 

and digital devices alongside apps, wearables, and sensors are creating 

millions of data points a day. There are over 7.2 billion phones in use, 
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112 million wearable devices sold annually, and over 100,000 healthcare 

apps available to download on your mobile phone.[75] IBM reports more 

than 2.5 quintillion bytes (2.5 × 1018) of data are created daily.[76] Data is 

everywhere. Moreover, it’s valuable.

The topic of data ethics has been thrust into the public spotlight 

through high profile fiascos such as the Facebook Cambridge Analytica 

scandal. Facebook, one of the world’s largest and most trusted data 

collection organizations, had user data harvested through a quiz hosted 

on its platform. Behavioral and demographic data of the 1.5 million 

completers of the quiz was sold to Cambridge Analytica. The data is largely 

considered to have been used to target and influence the outcome of 

the United States 2017 elections.[77] What’s more concerning is that this 

breach of security was reported over 2 years after the initial data leak.

We are in a time where fake news can travel quicker than the truth. 

Society is at a critical point in its evolution, where the use, acceptance, and 

reliance on data must be addressed collectively to develop conversations 

and guiding principles on how to handle data ethically.

The ethical and moral implications of data use are vast, and best 

demonstrated through an example. During this chapter, we will refer to the 

following hypothetical scenario:

SCENARIO A

John, type 2 diabetic, aged 30, has a severe hypoglycemic episode and is 

rushed to the hospital.

John has been taken to the hospital unconscious for treatment. John, a truck 

driver, was prescribed insulin to treat his type 2 diabetes by his doctor’s 

advice, which is most likely the cause of his hypoglycemia. lots of data is 

generated in the process—both in the hospital, by healthcare professionals, 

and also on John’s apple Watch—his heart rate, heart rate variability, activity 

details, and blood oxygen saturation to look out for signs of a diabetic coma. 
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John’s blood sample is also taken, and his genome identified. let’s suppose all 

this data is used, and it’s useful.

John’s apple Watch was used to monitor his heart on the way to the 

emergency room, through which it was suspected that he has an irregular 

heartbeat, later confirmed with the hospital’s medical equipment.

Upon waking from his hypoglycemic episode, John is pleased to learn that 

genetic testing does not always give bad news, as his risks of contracting 

prostate cancer is reduced because he carries low-risk variants of the several 

genes known in 2018 to contribute to these illnesses. however, John is told of 

his increased risks of developing alzheimer’s disease, colon cancer, and stroke 

from his genetic analysis.

 Informed Consent
Informed consent refers to the user (or patient) being aware of what their 

data will be used for. Informed consent refers to an individual being legally 

able to give consent. Typically this requires an individual to be over 18, 

of sound mind, and able to exercise choice. Consent should ideally be 

voluntary.

Scenario A demonstrates how useful data can be given a particular 

context (or use case) and demonstrates the many intricacies of informed 

consent.

 Freedom of Choice
Freedom of choice refers to the autonomy to decide whether your data is 

shared and with whom. This refers to the active decision to share your data 

with any third party. For example, should John, who has type 2 diabetes, 

now be required to demonstrate that his blood glucose levels are under 
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control and within the recommended range before being allowed to 

drive his truck again? A person’s choice as to whether to share their data 

could result in a future where people are exempt from opportunities until 

otherwise demonstrated by their data. In an ideal world, each person 

should have a choice as to whether to share their data. In practice, this is 

neither realistic nor plausible.

There are ethical implications for John not consenting, or wanting to 

consent, to the healthcare team using his Apple Watch data—namely, that 

John’s Apple Watch data belongs to John. Should the emergency response 

team have used John’s heart rate only to ensure it was beating or was it 

ethical to diagnose John’s atrial fibrillation subsequently? With informed 

consent, John would have a choice, which is a fundamental pillar of data 

ethics.

This is a choice that patients previously did not need to make. Before 

the datafication of modern life, there were fewer devices to capture such 

data and far less sophisticated means of predicting future events. The 

advances of AI and machine learning in healthcare mean that today there 

are two groups of people: those that seek out health information to help 

them plan and manage future scenarios, and those that are happy to live in 

a state of not knowing. As the datafication of everything continues, those 

that are happy to live in a state of ignorant bliss are finding less opportunity 

to do so.

 Should a Person’s Data Consent Ever 
Be Overturned?
In an ideal world, an individual’s decision to share their data should be 

respected. However, as an absolute concept, this is neither realistic nor 

plausible. For instance, let’s assume John was to decline consent to use 

his data. On the assumption that the emergency response team’s duty is to 

safeguard the health of its patients, John’s data helped to monitor his vital 
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signs, which contributed to his survival. Arguably the emergency response 

team would be acting unethically if they were not to use the full variety of 

data available to them at that given moment. Perhaps even John himself 

would overrule his consent if it meant increasing his chances of survival.

Precedent demonstrates freedom of choice and consent is ultimately 

a utopian concept. In October 2016, a man accused of the rape and 

murder of a 19-year-old medical student in Germany had the health data 

from his smartphone used against him at trial.[78] The suspect, who was 

identified by a hair discovered at the crime scene, refused to give police the 

PIN code to his smartphone. Police enlisted the help of a cyberforensics 

firm in Munich who broke into the device. Data on the suspect’s iPhone 

recorded his steps and elevation, which police analyzed. Police suggested 

the suspect’s elevation (stair climb) data could correlate to him dragging 

his victim down a riverbank and climbing back up. As well as locating 

the suspect’s movements, the phone also suggested periods of strenuous 

activity, which included two peaks the onboard smartphone app put down 

to climbing stairs. Police investigators mimicked how they believed the 

suspect disposed of the body and demonstrated the same two peaks of 

stair climbing detected on the suspect’s iPhone.

 Public Understanding
The Facebook Cambridge Analytica fiasco went on to highlight just how 

unaware the public are on the topic of data privacy. The US Senate’s 

interrogation of Facebook CEO Mark Zuckerburg illustrated just how 

ignorant and unaware the public was on the topic of technology. Senators 

were puzzled as to how Facebook made money as a free platform, 

referred to sending e-mails through WhatsApp, and queried as to whether 

encrypted messages could ever be used to provide targeted advertising.[79]  

The misunderstandings and ignorance demonstrated by critical 

stakeholders on the topic of data governance were astounding.
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Increased public awareness and understanding are required to 

educate the public on the use of data and to empower people to decide 

how, where, and by whom their data can be used.

 Who Owns the Data?
People generate thousands of data points daily. Nearly every transaction 

and behavior creates a data trail left through devices such as smartphones, 

televisions, smartwatches, mobile apps, health devices, contactless 

cards, cars, and even fridges. However, who owns the data? The topic 

of data ownership is an example of a complex first-time problem that 

has facilitated the development of international policy and governance. 

Historically, user data is owned by companies rather than the individual.

EHRs enable machine learning-based predictive analytics that will 

eventually enable providers to provide enhanced levels of care. Although it 

seems unlikely a patient would not want to not share their health data for 

improved morbidity and mortality, one would reasonably assume it would 

become more difficult to withdraw such privileges, much akin to closed-circuit 

television (CCTV) where consent is not often noted or obvious, and is widely 

assumed to have utilitarian benefits over the long term. Many platforms 

prevent users from accessing their full range of services if data sharing is 

disabled. This is driven by the organizational need to store data in a robust and 

central repository for safety, governance, and improvement.

Take the example of a patient who uses a connected blood glucose device 

and mobile app to track and record their blood glucose. Blood glucose data 

is delivered from the user’s blood glucose meter to her mobile application. 

Although the data would be presented on the user’s phone, the data is held 

in the mobile application provider’s database, subject to the terms and 

conditions of use. Many of today’s web sites, mobile apps, connected devices, 

and health services state that data can and will be used in an anonymized 

and aggregated format, or in some instances in an identifiable format, by the 

organization providing the service and also typically with selected partners.
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Data collection, usage, and sharing have become a fundamental part 

of supporting the data-driven quality improvement processes.

Types of shared data include the following:

• Anonymized data

Anonymized data is data that has identifiable 

features removed. Identifiable features are features 

that enable someone to recognize the person 

that the data has come from. For example, an 

oncology ward’s spreadsheet of patients would be 

anonymized if the name, date of birth, and patient 

number were removed.

• Identifiable data

Identifiable data refers to data that can be used to 

identify an individual. For instance, an oncology 

ward’s spreadsheet of patients would be identifiable 

if it reported the name, date of birth, and patient 

number.

• Aggregate data

Aggregate data refers to data that has been 

combined and where a total is reported. Following 

the oncology example, if the ward’s spreadsheet 

covered ten patients, aggregate data reporting could 

include the male-to-female split or age brackets 

of patients. Data is cumulatively reported for the 

population within the dataset.

• Individualized data

Individualized data is the opposite of aggregated 

data. Instead of data being combined, data is 

reported for each person within the dataset. 

Individualized data does not have to be identifiable.

Chapter 6  ethiCs of intelligenCe



217

Concerns over data privacy have spurred a global response. In May 

2018, GDPR (or the General Data Protection Regulation) came into force 

across Europe. GDPR legislation governs organizations in how they use 

and share user data.[80] Because of GDPR, organizations have been forced 

to collect the opt-in consent of their memberships and declare to users 

how they would use user data and with whom they should share it. The 

GDPR legislation places data control firmly in the user’s hands. Users of 

data- driven systems are now able to exercise their rights in seeing the data 

held on them, with whom their data is shared and why, the right to be 

forgotten, and the right to be deleted. GDPR also defined labels for those 

collecting and processing data:

• Data controller: The data controller refers to the person 

or organization that controls, stores, and makes use of 

the data.

• Data processor: The data processor refers to the person 

or organization who processes data on behalf of a data 

controller. Based on this definition, agents such as 

calculators could be considered data processors.

For those working with data, it is useful to understand the distinction 

between data processor and controller, and the responsibilities of each party.

GDPR demonstrates how vital data safety has become. GDPR is 

tightening data access, security, and management in an ambitious attempt 

to protect the EU’s 500 million citizens. It has single-handedly repositioned 

control with users. The maximum fine for the worst offenders against 

GDPR regulations is set at either €20 million (£17.6m) or 4% of global 

revenues for larger organizations.[81] Unfortunately, regulations affect all 

businesses and organizations, and a flurry of reconsent requests flooded 

the Internet. There is much confusion as to how GDPR laws are applied, 

as demonstrated when Mark Zuckerberg was summoned to the European 
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Parliament in 2018. Just like in the United States, key figures were ignorant 

and unaware as to how data and connectivity work in the twenty-first 

century.

The topic of a user’s right to be forgotten within machine learning has 

posited several compelling ethical questions. For instance, if John’s data 

were to be used in a machine learning algorithm to predict the likelihood 

of severe hypoglycemia, and if John were to request his data to be deleted, 

it would be close to impossible to decouple John’s data from the machine 

learning model that is learned. Should John’s consent be overridden if 

there is a utilitarian benefit?

Further still, if John’s data were to be for some reason valuable in 

developing an algorithm to diagnose and predict disease, it could be 

claimed that it is unethical for John to refrain from sharing his data or 

requesting his data to be removed from such an algorithm. If John were to 

be the only patient in the world to have a genetic defect, or if his data was 

for some reason useful to progress medical understanding, it is evident as 

to how and why John’s data would be useful to humankind.

 What Can the Data Be Used For?
Data is already used to fuel a variety of decisions. Employers have used 

psychometric and parametric testing for decades to understand potential 

candidates. Nowadays, employers also look at supporting sources of data. 

Employers often scour the social media profiles of prospective employees 

for concerns of reputational risk. In the same vain, history is plagued with 

people who have lost their jobs as the result of (deemed inappropriate) 

social media use.

What an individual’s data can be used for raises ethical and moral 

apprehensions. The concepts of identity and free will are challenged by 

the notion that an individual’s data could be used to make decisions with 

direct ramifications that may be unbeknownst to that person.
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Car insurance is an industry that has evolved to optimize the use 

of data. Historically, car insurance premiums have been grounded in 

accident claim data, which is generalized for segments of the population. 

The advent of the black box enables more precise premiums based on 

a variety of demographic and behavioral factors—such as the age of the 

driver, times that the car is used, the speed of driving, and frequency of 

erratic acceleration among others. This data can also be used to reduce the 

cost of car insurance premiums should the driver be sensible and enables 

the increase in car insurance premiums should the driver not follow the 

stipulations set out by the insurer. Others see this constant real-time data 

analysis (and subsequent feedback) as “big brother.”

Similarly, life and health insurance are beginning to follow in the 

footsteps of car insurance. Life and health insurers are increasingly 

providing incentivized products that reward positive behaviors and 

chastise negative behaviors. Life insurer Vitality, for instance, offers a 

product whereby it provides an Apple Watch to its members to encourage 

positive and healthy behaviors. Similarly, British organization Diabetes 

Digital Media provide evidence-based digital health interventions to 

insurers and bill payers worldwide to incentivize wellness.[82]

Individuals should be aware that data could also be used for cynical, 

more sinister purposes. For instance, patient data could be used to decline 

an individual from a treatment, operation, or opportunity. The public 

has been incredibly trusting of data use, and robust data governance 

is required to prevent its future misuse. GDPR is regarded as the first 

step toward improved understanding and data governance. GDPR is 

considered by some to be as revolutionary to data science as the advent of 

the Internet itself.
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 Privacy: Who Can See My Data?
Conversations of data ownership naturally lead to who can see your 

data. The key is in ensuring only approved services and organizations 

have access to your data. For instance, it is unlikely you would want a life 

insurance company to be given your medical data without your consent, 

particularly if there was data that could influence your coverage.

Data sharing between applications is commonplace, with APIs 

enabling accessibility and faster connectivity between independent 

services. For instance, users can import nutrition data from apps like 

MyFitnessPal into their diabetes management or fitness apps. These 

services often replicate user data among a variety of independent 

architectures, which leads to concerns over managing approved data 

access. Applications that enable data integration must also provide the 

facility to decouple patient data. Systems must be able to verify imported 

data for data governance, auditing, and patient safety.

The debacle surrounding Facebook and Cambridge Analytica went on 

to demonstrate that even if one trusts an aggregator of data, it is possible 

that third parties are engaging with that very data without your knowledge. 

Facebook requested Cambridge Analytica to delete its Facebook user data. 

Even though Cambridge Analytica agreed to the request and said they had 

deleted the user data, they were later demonstrated not to have deleted 

the data.[83] This act of deception leads to questions of accountability, the 

ramifications of data leaks, and who is accountable in situations of third- 

party data leaks.

Moreover, even if data is anonymized, it may not guarantee privacy. 

Netflix recently published 10 million movie rankings from 500,000 

members as part of a challenge to improve the Netflix recommendation 

system. Although data was anonymized to remove personal details of 

members, researchers at the University of Texas were able to de- anonymize 

some of the Netflix data through comparing similar rankings and time 

Chapter 6  ethiCs of intelligenCe



221

stamps with public information in IMDb (Internet Movie Database). There 

are natural security problems with anonymous data—mainly that it does 

not mean that you are anonymous.

When it comes to sharing data, it is useful to distinguish between 

people and patients. The general public’s attitude toward data use in 

the realm of healthcare is far more welcoming than its attitude toward 

nonmedical data use. A survey of 5,000 people by Diabetes.co.uk reported 

that 56% of people are hesitant to share their data without good reason. 

When a group of patients with type 2 diabetes was asked a similar 

question about whether their data could be collected and used for further 

research, 83% of patients opted to share their data.[84] Patients appear to 

understand or are at the very least hopeful that, through sharing of health 

data, they are progressing medical understanding and treatment. People, 

however, are far more skeptical of beneficial data use. Confidentiality is a 

core tenet of data ethics.

 How Will Data Affect the Future?
The sharing of patient data and aggregation of big datasets is being used 

to enhance diagnosis, treatment, and care. As the types and quality of data 

improve, healthcare’s precision will become more precise in the areas 

discussed next.

 Prioritizing Treatments
Big data medical sets can enable predictive analytics to determine optimal 

treatment pathways for various segments of the population. There is 

the potential to prioritize only those who are likely to see efficacy in the 

treatment, which begs the question as to how best to support those that  

do not.
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 Determining New Treatments and Management 
Pathways
The analysis of real-world experience data, clinical studies, randomized 

clinical trial (RCTs), and pharmacological data is facilitating treatment 

and management discovery. Digital health interventions have been 

demonstrated to reverse type 2 diabetes, reduce the number of epilepsy 

seizures. Data has the potential to develop new pharmacological 

interventions and disrupt traditional treatment paradigms.

 More real-world evidence
The use of real-world evidence (RWE) at scale from patient communities, 

digital education programs, and health tracking apps is being increasingly 

demonstrated to improve the self-management landscape. A concern 

with real-world evidence has typically been lack of academic robustness. 

However, RWE is being increasingly used in research to determine 

population usage and benefits. Real-world evidence is a vital part of AI’s 

ethical journey, and there must be trust between patient and provider.

 Enhancements in Pharmacology
The precision audiences required for RCTs and academic studies can 

be identified quicker and easier through digital platforms. This has 

benefits, such as quicker project recruitment times, greater potential, and 

multisource comparison. Real-world data is being used to develop better 

and more effective drugs.
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 Optimizing Pathways Through 
Connectivity—Is There a Limit?
Machine learning’s primary use in the short term involves data analysis 

and predictive analytics.

 Security
There are significant privacy concerns that come with a truly unified 

system. What if such a system were to be compromised? Do people, 

or patients, want a truly unified system, or is the possibility to use it 

for malintent greater than the potential good? The consequences of 

vulnerabilities—whether security, operational, or technical—is amplified 

in unified systems.

For years, large companies have talked about ways to combine and 

analyze the giant repositories of data they separately gather about people: 

location data from smartphones, financial data from banks, relationship 

data from social networking apps, and search data from browsers—to 

build a complete picture of a person’s behavior.

Facebook reportedly offered to match the data that hospitals had 

about individual patients with social information gleaned from the social 

networking site, such as how many friends the person has, or whether they 

seem to engage with others on the site. The company paused the project 

after privacy concerns were raised by the Cambridge Analytica scandal.

Further still, there are security concerns around IoT devices, which 

now range from thermometers, cars, and washing machines to blood 

glucose meters, continuous glucose monitors, and insulin pumps. The 

requirement of network connectivity to operate as a smart device leaves all 

devices prone to vulnerability. Distributed denial of service attacks (DDoS) 

is used on IoT devices to break in and leave malicious code to develop 

botnets, leak data, or otherwise compromise the device. WeLiveSecurity 
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reported on 73,000 security cameras with default passwords in 2016.[85] A 

basic but key to learning from this is that it is always advisable to change 

credentials that use default passwords. DDoS attacks are nothing new, 

but the extent of vulnerability is only being uncovered through research 

and first-time problems, or security breaches. Research students from the 

University of Florida were able to compromise Google’s Nest thermostat in 

under 15 seconds.[86]

DDoS attacks can be crippling for any organization. Develop 

mitigation procedures and ensure network infrastructures allow visibility 

of traffic entering and exiting the network. It is good practice to develop 

a DDoS defense plan, which should be kept and regularly updated and 

rehearsed.

 Ethics of Artificial Intelligence and Machine 
Learning
A primary application of machine learning in healthcare involves patient 

diagnosis and treatment. AI models are deployed to help physicians 

diagnose patients, especially in cases involving relatively rare diseases or 

when outcomes are hard to predict.

Imagine a future where doctors know exactly how many times you’ve 

eaten fast food in the last month, and that it is connected to your medical 

record. That data is used to suggest what foods to eat, comparing your 

health record to hundreds or thousands of other people to identify who 

is like you. Moreover, imagine this could directly affect life insurance or 

health insurance, with possible rewards for positive behavior and avoiding 

bad foods. Imagine a system that was able to predict your likelihood of 

developing any particular disease in real time.

The ethics of machine learning refers specifically to the questions of 

morality surrounding the outputs of machine learning models that use 

data, which come with their ethical concerns.
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Machine learning has already been used to develop intelligent systems 

that have been able to predict mortality risk and length of life from health 

biomarkers. AI has been used to analyze data from EHR to predict the risk 

of heart failures with a high degree of certainty.

Moreover, machine learning can be used to determine the most 

effective medication dosage learning on patient real-world and clinical 

data, reducing healthcare costs for the patients and providers. AI can 

not only be used in determining dosage but also in determining the 

best medication for the patient. As the genetic data becomes available, 

medications for conditions such as HIV and diabetes will accommodate for 

variations among races, ethnicities, and individual responses to particular 

drugs. Within the same data, medication interactions and side effects can 

be tracked. Where clinical trials and requirement for FDA approval look 

at a controlled environment, big real-world data provide us with real-time 

data such as medication interactions and the influence of demographics, 

medications, genetics, and other factors on outcomes in real time.

As the limitations of technology are tested, there are ethical and legal 

issues to overcome.

 Machine Bias
Machine bias refers to the way machine learning models exhibit bias. 

Machine bias can be the result of several causes, such as the creator’s 

bias on data used to train the model. Biases are often spotted as first-time 

problems with subtle and obvious ramifications. All machine learning 

algorithms rely on a statistical bias to make predictions about unseen data. 

However, machine bias reflects a prejudice from the developers of the data.

The capabilities of AI regarding speed and capacity of processing far 

exceed that of humans. Therefore, it cannot always be trusted to be fair 

and neutral. Google and its parent company, Alphabet, are leaders when 

it comes to AI, as seen with Google’s Photos service, where AI is used to 

identify people, objects, and scenes. But it can still go wrong, such as when 
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the search engine showed insensitive results for comparative searches for 

white and black teenagers. Software used to predict future criminals have 

been demonstrated to show bias toward black people.[87]

Artificially intelligent systems are created by humans, who are biased 

and judgmental. If used correctly, and by those who positively want to 

affect humanity’s progress, AI will catalyze positive change.

 Data Bias
Bias refers to a deviation from the expected outcome. Biased data can lead 

to bad decisions. Bias is everywhere, including the data itself. Minimize the 

impact of biased data by preparing for it. Understand the various types of 

bias that can creep into your data and effect analysis and decisions. Develop 

a formal and documented procedure for best practice data governance.

 Human Bias
For as long as humans are involved in decisions, a bias will always exist. 

Microsoft launched an AI chatbot named Tay in 2017. Tay interacted with 

other Twitter users and learned from its interactions with others. Once 

the Twittersphere seized hold of Tay, trolls steered the conversation from 

positive interactions to interactions with trolls and comedians. Within 

hours, Tay was tweeting sexist, racist, and suggestive posts. Sadly, Tay only 

lived for 24 hours. This experiment raises the question of whether AI can 

ever really be safe if it learns from human behavior.[88]

 Intelligence Bias
Machine learning models are only as good as the data they are trained 

on, which often results in some form of bias. Human thinking AI systems 

have demonstrated bias amplification and caused many data scientists to 

discuss the ethical use of AI technology. Early thinking systems built on 

Chapter 6  ethiCs of intelligenCe



227

population data showed significant signs of bias regarding sex, race, social 

standing, and other issues.

An infamous example of algorithmic bias can be found in criminal 

justice systems. The Correctional Offender Management Profiling for 

Alternative Sanctions (COMPAS) algorithm was dissected in a court case 

about its use in Wisconsin. Disproportionate data on crimes committed 

by African Americans were fed into a crime prediction model, which then 

subsequently output bias toward people from the black community. There 

are many examples and definitions of biased algorithms.[89] Algorithms 

that assess home insurance risk, for instance, are biased against people 

who live in particular areas based on claim data. Data normalization is key. 

If data is not normalized for such sensitivities and systems not properly 

validated, humanity runs the risk of underrepresenting and skewing 

machine learning models for minorities and underrepresenting many 

groups of people.

Removing bias does not mean that the model will not be biased. Even 

if an absolute unbiased model were to be created, we have no guarantee 

that the AI won’t learn the same bias that we did.

 Bias Correction
Bias correction begins with the acknowledgment that bias exists. 

Researchers began discussions on machine learning ethics in 1985 when 

James Moor defined implicit and explicit ethical agents.[90] Implicit agents 

are ethical because of their inherent programming or purpose. Explicit 

agents are machines given principles or examples to learn from to make 

ethical decisions in uncertain or unknown circumstances.

Overcoming bias can involve post-processing regarding calibration of 

our model. Classifiers should be calibrated to have the same performance 

for all subgroups of sensitive features. Data resampling can help smoothen 

a skewed sample. But, for many reasons, collecting more data is not very 

easy and can cause budgetary or time problems.
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The data science community must actively work to eliminate bias. 

Engineering must honestly question preconceptions toward processes, 

intelligent systems, or how bias may expose itself in data or predictions. 

This can be a challenging issue to tackle, and many organizations employ 

external bodies to challenge their practices.

Diversity in the workplace is also preventing bias from creeping into 

intelligence. If the researchers and developers creating our AI systems are 

themselves lacking diversity, then the problems that AI systems solve and 

training data used both become biased based on what these data scientists 

feed into AI training data. Diversity ensures a spectrum of thinking, ethics, 

and mind-sets. This promotes machine learning models that are less 

biased and more diverse.

Although algorithms may be written to best avoid biases, doing so is 

extraordinarily challenging. For instance, even the motives of the people 

programming AI systems may not match up with those of physicians and 

other caregivers, which could invite bias.

 Is Bias a Bad Thing?
Bias raises a philosophical question on the premise that that machine 

learning assumes that biases are generally bad. Imagine a system that is 

interpreted by its evaluators to be biased, and so the model is retrained 

with new data. If the model were to output similarly biased results, the 

evaluation might wish to consider that this is an accurate reflection of the 

output and hence require a reconsideration of what bias is present. This is 

the beginning of a societal and philosophical conflict between two species.

 Prediction Ethics
As advanced machine learning algorithms and models are developed, 

more accurate and reliable conclusions will be achieved in a short space 

of time. Technologies are being used currently to interpret a variety of 
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images, including those from ultrasound, magnetic resonance imaging 

(MRI), X-rays, and retina scans. Machine learning algorithms can already 

effectively identify potential regions of concern on images of the eye and 

develop possible hypotheses.

It is key to ensure trust in your goals, data, and organization 

through good governance and transparency. This is fundamental for  

AI going forward.

 Explaining Predictions
As AI algorithms become smarter, they also become more complex. 

Remaining ignorant about the construction of machine learning systems 

or allowing them to be constructed as black boxes could lead to ethically 

problematic outcomes. If an agent were discovered to be predicting 

incorrectly, it would be a daunting task discovering the behavior that 

caused an event that is hidden away and virtually undiscoverable.

Interpretability of both data and machine learning models is a critical 

aspect of intelligent systems. This not only ensures the model integrity 

but also that it is attempting to solve the correct problem. Users of 

solutions that embed data science will always prefer experiences where 

they are understandable and explainable. Data scientists can also use 

interpretability metrics as the basis for validation and improvement.

Machine learning black boxes could harbor bias, unfairness, and 

discrimination through programmer and data choices to never be 

known. Neural networks are an example of a typically unexplainable 

algorithm. The backpropagation algorithm’s computed values cannot 

be explained. As AI develops in its accuracy in resembling humans, 

there will be a greater requirement to ensure AI isn’t picking up the bad 

habits of humans.
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 Protecting Against Mistakes
Intelligence comes from learning, whether you are a human or machine. 

And intelligent machines, just like humans, learn from mistakes. Data 

scientists will typically develop machine learning models with a training, 

testing, and validation phase to ensure systems are detecting the correct 

patterns within a defined tolerance. The validation phase of machine 

learning model development is unable to cover all possible permutations 

of parameters that may be received in the real world. These systems can be 

fooled in ways that humans wouldn’t be. Governance and regular auditing 

is required to ensure that AI systems perform as intended and that people 

cannot influence the model to use it for their own ends.

The incorrect classification of predictions can lead to scenarios where 

the outcome is a false positive or false negative. The impact of both should 

be considered in the context of your domain. Take for instance an incorrect 

diagnosis of breast cancer. In a false positive scenario, a patient would be 

informed they had breast cancer when they did not. Being informed that 

this classification was incorrect will come to some relief to the patient. 

A false negative would result in a patient’s disease progression and the 

eventual correct re-diagnosis. The mental and physical trauma as a result 

of a false negative prediction should be considered. Patients should always 

be informed of the level of accuracy of results.

Information governance for systems that will be used by patients 

(patient-facing), whether predictive or otherwise, should provide robust 

risk mitigation procedures for mistakes in outcomes. Emotional or 

psychological patient support should be considered for those experiencing 

trauma as the result of the incorrect diagnosis.

As well as acting as a catalyst for innovation, the speed at which agile 

digital technologies are rushed to the market is also AI’s biggest pitfall. 

Technology company LG infamously unveiled an AI bot at CES 2018  

(Consumer Electronics Show, an annual trade show organized by 

the Consumer Technology Association) that ignored the presenter’s 
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instructions. The AI bot, which was marketed as providing innovative 

convenience, failed to respond to any of its master’s comments, was 

either malfunctioning, or chose to ignore the commands.[91] Whether in 

healthcare or not, AI system performance metrics should be transparent 

and audited regularly. The cost, particularly in healthcare, is too high not 

to. AI systems in healthcare have been demonstrated to fail exorbitantly. 

In the UK, an NHS breast cancer screening system failed to appropriately 

invite women for screening, with observers claiming up to 270 females 

may have died as a result.[92] In this particular case, the organization 

responsible for running the system placed blame with a contractor. 

The ethical implications and public perception of such mistakes are 

enormous.

 Validity
There is a requirement to ensure the validity of machine learning models 

over time to ensure the model can be generalized and generalizations are 

valid. Regular testing and validation of models are essential to maintaining 

integrity and precision of your machine learning model. A suboptimal 

predictive analytics model will provide unreliable results and damage 

integrity.

 Preventing Algorithms from Becoming Immoral
Algorithms can, and do, already act immorally. To date, AI algorithms 

have mainly performed in unethical ways due to design. This has been 

demonstrated very well outside healthcare by organizations such as Uber 

and Volkswagen. Uber’s Greyball algorithm attempted to predict which 

passengers were undercover police officers and used it to identify and deny 

transport.[93] Volkswagen’s algorithm allowed vehicles to pass emission 

tests by reducing nitrogen oxide emissions during the test phase.[94]  

Both organizations were internationally condemned for their public 
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deception and lack of transparency. Precedents such as these from the 

world’s largest companies demonstrate that internal and external auditing 

is required to validate the integrity and ethics of algorithms and indeed 

their organizations.

There is a genuine concern that AI may learn to act immorally not only 

from its creators but also from its experience.

The Ecole Polytechnique Fédérale of Lausanne’s Laboratory of 

Intelligent Systems in Switzerland conducted a project that monitored 

robots designed to collaboratively search for positive resources and ignore 

dangerous items.[95] Robots were designed as genetic agents equipped 

with sensors and a light that was used to flag the identification of a positive 

resource, which was finite in number. Each agent’s genome dictated 

its response to stimulus and was subject to hundreds of generations of 

mutations. Agent learning was reinforced by the agent receiving positive 

marks for identifying positive resources and negative marks for its 

proximity to poisonous items. The top 200 highest performing genomes 

were mated and mutated at random to produce the next generation of 

agents. In their first generation, agents switched their lights on when 

they discovered a positive resource. This enabled other agents to find the 

positive resource. Due to the limited number of positive resources, not 

all agents were able to benefit. Overcrowding meant that some agents 

would also be distanced from the positive resource they initially found. 

By the 500th generation, the majority of agents had evolved to keep their 

light switched off when they discovered a positive resource, and a third 

of agents evolved to act in a way that was the exact opposite of their 

programming. Some agents had grown to identify lying agents that had 

an aversion to the light. Agents that were initially designed to cooperate 

eventually ended up lying to each other due to scarcity.

These concerns are amplified when applied to incentivized clinical 

decision-support systems that could generate increased profits for their 
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architects or providers—a system that was recommending clinical tests, 

treatment, or devices in which they hold a stake, or by altering referral 

patterns.

In healthcare, this scenario is very concerning. All machine learning 

models regardless of their use must be governed and verifiable. A machine 

learning model that was incentivized to make decisions should also adhere 

to robust standards of transparency, morality, and scrutiny.

 Unintended Consequences
The adoption of AI in medicine is becoming more commonplace; 

and as a result, first-time problems or unintended consequences will 

govern the media perception and direction of AI ethics. There are very 

few technologies that have been embedded into healthcare without 

unintended, or adverse, effects. The question quickly comes to how data 

scientists, on behalf of humanity, can mitigate these risks.

The ethics of AI and unintended consequences have been significantly 

directed by The Three Laws, published by science fiction writer Isaac 

Asimov in 1942.[96] Asimov’s Laws, found in the “Handbook of Robotics, 

56th Edition, 2058 A.D.,” were designed as a safety feature to prevent robots 

from harming humans:

 1. A robot may not injure a human being or, through 

inaction, allow a human being to come to harm.

 2. A robot must obey orders given by a human being 

unless it conflicts with the First Law.

 3. A robot must protect its existence as long as  

such protection won’t conflict with the First or 

Second Law.
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In Asimov’s stories, man-like machines behave in counterintuitive 

ways. These acts are the unintended consequence of how the agent applies 

Asimov’s Laws to its environment. Only 70 years later, Asimov’s science 

fiction fantasy is eerily turning into reality. In 2012, South Korea published 

a Robot Ethics Charter to prevent ills and malintent;[97] and the IEEE and 

British Standards Institute have both published best practice guides for 

ethical agent engineering.[98] Best practice guides to designing ethically 

sound agents are typically grounded in Asimov’s Laws.

Fundamentally, intelligent agents are made of binary code and do not 

contain or obey Asimov’s Laws. Their human architects are responsible for 

implementing the laws and reducing the risk of unintended consequences.

AI is unlikely to become evil and turn on humanity in the way 

depicted by Hollywood. Rather, a lack of context could lead to AI making 

unintended and disastrous actions. For instance, an intelligent agent that 

was tasked with eradicating HIV in the global population could eventually 

come to some conclusion that to achieve its objective; it should kill 

everyone on the planet. It is easier to frame AI intelligence in a negative 

setting. Without careful management, an AI agent’s utility function could 

allow for potentially harmful scenarios. There is a limited foundation to 

suppose that an AI agent would have such an extreme adaptation, yet it is 

worth consideration. There are undoubtedly many positive unintended 

consequences to AI that could save humanity from itself.

 How Does Humanity Stay in Control 
of a Complex and Intelligent System?
Over millions of years, humans have combined ingenuity and intelligence 

to create methods and tools to control other species. As a kind, humans 

have evolved to dominate, driven primarily by the capacity to learn from 

the mistakes of themselves or others. Through this, humans have come 
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to develop tools to master bigger, faster, stronger animals and techniques 

such as mental or physical training to achieve optimal performance for 

such tasks.

What will happen when AI is more intelligent than humans?  

Human- made AIs are already able to surpass human cognition in niche 

areas. AlphaGo Zero, the reinforcement learning agent developed by 

Alphabet, acted as its teacher to master the game of Go.[99] AlphaGo was 

able to learn itself, without the aid of humans or historical datasets over 

thousands of game interactions. Are humans doomed to be mastered by 

an evolving AI race? This concept is known as the singularity—the point at 

which AI intelligence surpasses that of humans. It cannot be expected that 

an AI whose intelligence surpasses humans can be switched off, either. 

A reasonably intelligent agent may anticipate this action and potentially 

defend itself. With AI that is more intelligent than humans, particularly if 

learning itself (with its hyperintelligence), humankind is no longer able to 

predict outcomes and must accordingly be prepared for the situation.

 Intelligence
Intelligence refers to the outcomes of AI models and how they are used. 

Intelligence powers the ads you see, the apps you download, the content 

you see on the Internet, the cab you hire, and the price you pay for items 

such as loans and mortgages.

The ethics of intelligence posits questions such as whether an 

autonomous vehicle should protect its driver or others? Should a car 

prioritize protecting its passengers or instead protect other drivers and 

the public? What if an incident were to cause loss of life—what should be 

the approach then? This may become less of a problem once autonomous 

vehicles are prevalent and fewer humans are involved. Until then, if an 

autonomous vehicle on autopilot and without human steering does have 
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an accident, who should be liable? Court cases involving autonomous 

vehicle accidents have demonstrated that drivers are often using autopilot 

on impact.

Assessments have expressed that humans do not want a fair, utilitarian 

approach and want their vehicle to protect the driver. Regulation on 

topics such as these will be instrumental in the long-term adoption of 

autonomous vehicles.

A significant application of machine learning is NLP. Virtual assistants 

such as Alexa have revolutionized methods of agent engagement. As 

the use of AI becomes embedded with everyday life, humans must 

not be assumed to vigilant and aware, and organizations should take 

steps to assure the public. The vocal skills of Google’s Duplex bot were 

demonstrated at its developer conference in 2018 where it was shown 

booking a hair appointment. The onstage unveiling involved the Duplex 

software conducting a conversation with a hair salon receptionist. 

The computer-generated voice used pauses, colloquialisms, and 

circumlocutions usually present in human speech. The voice was 

under control of Google’s DeepMind WaveNet software that has been 

trained using lots of conversations, so it knows what humans sound like 

and can mimic them effectively. Although welcomed by some, many 

were concerned at the deliberate deception of a human by AI. This has 

amplified the public’s voice that humans demand explicit confirmation 

when engaging with AI.[100]

Natural language can be separated into two components: style and 

content. Analysis of communications such as engagements, e-mails, or 

messages can easily identify sentiment and opinion. Negative terms, 

for example, could be identified to understand the state of someone’s 

emotional health. The implications of this, taking place publicly or 

privately, are vast. Analysis of social media profiles and other unstructured 

sources of data could lead to employers or insurers making predictions 

about people based on engagement, communication, or sentiment data 

available for mining.
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 Health Intelligence
Health intelligence refers specifically to the intelligence developed through 

healthcare AI. There are a variety of areas that health intelligence is being 

used in industry, driven by improvements in patient health, costs, and 

resource allocation:

• Healthcare services—patients are increasingly engaging 

with predictive analytic services to diagnose disease. 

For instance, diabetic retinopathy is being detected 

through AI systems developed through a partnership 

between Alphabet and Great Marsden hospital. 

Similarly, British organization Diabetes Digital Media 

developed a foot ulceration detection algorithm for 

earlier and quicker referral to podiatry clinics.

• Pharmacology—new drugs are being discovered 

through the use of learning on real-world data and 

patient profiles. This is enabling pharma to develop 

new and more precise medications.

• Life and health insurance—patients with health 

conditions (or risks) such as type 2 diabetes and 

prediabetes, who would traditionally receive loaded 

premiums, can use digital health interventions to 

manage and improve their condition: and as a result of 

their sustained engagement, receive reduced premiums 

to incentivize wellness. The benefits to life and health 

insurers are vast. Not only are insurers able to engage 

with more of the population, through connecting 

insurance with improved wellness, but insurers also can 

save money through fewer and reduced claims, reduced 

paramedical and medication costs, improve their risk 

profile, and optimize risk algorithms and underwriting.
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Health intelligence cannot be developed in an environment where 

the public’s ethical AI requirements are ignored, such as with personal 

data. The ethics of AI should be integral to the development of systems 

capable of health intelligence, identifying the risks of agents before they 

are realized. Health intelligence ethics are integral to understanding the 

intention of data and use of outcomes in medicine.

 Who Is Liable?
AI’s application in healthcare is an exciting opportunity to improve patient 

care and cost savings within a short period. Accurate, timely decisions 

influence the diagnosis, treatment, and outcomes of patients with any 

number of illnesses. Healthcare professionals can analyze a finite number 

of images, tests, and samples; and clinical decisions are still prone 

to human error. With AI, clinical decisions can be made with varying 

confidence through the analysis of infinite samples in near real time. The 

medical and technological limitations of AI appear easier to overcome 

than the potential moral and legal issues. If a breast cancer diagnosis 

algorithm falsely predicts breast cancer or an algorithm fails to identify 

signs of diabetic retinopathy on an eye scan, who should be to blame?

There are three liability possibilities in the diagnosis of a patient’s disease:

• A human doctor decides a patient diagnosis, with no 

assistance from an external agent. A human doctor may 

be very accurate when symptoms are evident and often 

spots less obvious concerns at first glance. In this case, 

the liability is always with the doctor.

• An intelligent agent predicts the patient diagnosis, with 

a 99% accuracy. Seldom will a patient be misdiagnosed, 

but errors such as death are neither the liability of the 

agent or human. If an AI was to make such a mistake, 

how would a patient raise their issue?
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• A human doctor is assisted by an intelligent agent. In 

this case, it may prove harder to identify responsibility, 

as the prediction is shared. Even if the human’s 

decision was final, it could be argued that the countless 

experience of the AI agent would be a key factor in 

influencing a decision.

Liability for an AI agent’s behavior can be understood as belonging to 

the following:

• The organization that developed the AI agent.

• The human team that designed the AI agent is 

responsible for any unexpected functioning or 

inaccurate predictions.

• The AI agent is responsible for any unexpected 

behaviors itself.

AI agent development is often the result of numerous engineers and 

collaborators, and thus holding the developers to account is not only 

difficult to manage but may put off potential engineers from joining the 

industry. Holding the AI development organization to account sounds like 

the best route to ethical adherence.

How do we ensure AI systems will not overturn humans? What 

regulations govern our safety? Friedler and Diakopoulos suggest that five 

core principles are used to define organizational accountability:[101]

• Auditability: External bodies should be able to analyze 

and probe algorithm behavior.

• Accuracy: Ensure good clean data is used. 

Identification of evaluation metrics, regular tracking 

of accuracy, and benchmarking should be used to 

calculate and audit accuracy.
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• Explainability: Agent decisions should be explainable 

in an accessible manner to all stakeholders.

• Fairness: Agents should be appraised for 

discrimination.

• Responsibility: A single point of contact should be 

identified to manage unintended consequences and 

unexpected outputs. This is similar to a Data Protection 

Officer, but specifically for AI ethics.

 First-Time Problems
Real-world data is already demonstrating that type 2 diabetes management 

has been misguided for the past 50 years. Who should be liable when real- 

world experience demonstrates legacy treatments have been misled?

Supervised and unsupervised models developed on patient data is 

creating new concepts in healthcare that are defining AI ethics. First-time 

problems are a form of unintended consequence. Data can now be used 

within AI to detect risks of disease, such as type 2 diabetes, hypertension, 

and pancreatic cancer. If an application was able to tell you about a 

terminal disease you could do nothing about, would you want to know? 

Would you even want to know that there was a choice to know? Services 

like 23andMe give feedback on disease risk based on the patient’s genetic 

profile. For instance, if someone were to be informed they had a reduced 

risk of developing certain diseases, there may be some individuals 

that have a propensity for riskier behaviors. If a patient is told their 

susceptibility to lung cancer is lower than average, would this lead to a 

higher risk of them becoming smokers or other risky behaviors? Similarly, 

knowing the risk of developing particular conditions could lead to mental 

and emotional consequences. The implications on human psychology and 

behavior of knowing disease risk will be discovered as time and evidence 

develops.
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 Defining Fairness
AI is changing the way we interact and engage with products and services. 

As accessibility to data grows, how do we ensure AI agents treat people 

justly? Recommendation systems, for instance, can significantly affect our 

experience. But how do we know they are fair? Are we being biased by the 

choices we are given? A machine learning model cannot be fair if there is 

not a clear definition of fairness. There are many definitions of fairness and 

collaboration between social scientists and engineers, and AI researchers 

are required to determine a clear recognition of fairness. Fairness dictates 

that data misuse should have public, legal, and ethical consequences.

 How Do Machines Affect Our Behavior 
and Interaction
AI’s rapid evolution is prompting humankind to evaluate just what it 

means to be a human.

 Humanity
As AI bots have become better at modeling conversations and 

engagements with humans, so too have their prevalence. Virtual assistants 

such as Alexa, Siri, and Google Home are in the hands of over 100 million 

people—and voice-based telephony agents are commonplace. Not only 

are agents able to mimic conversational language, but emotion and 

reaction modeling is more sophisticated and believable than ever. In 2015, 

a bot named Eugene won the Turing Challenge, which asks humans to 

rate the quality of their communication with an unknown agent and to 

guess whether it is a human or an AI agent. Eugene was able to disguise 

itself as a human to more than half of its human raters.[102] The blurring 

between humankind and robot-kind is imploring exploratory interspecies 
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relationships. In 2017, Chinese AI engineer Zheng Jiajia married robot 

Yingying, a robot spouse he created to ease the pressure of marriage.[103]  

Human-replacement sex robots are now common, with connected AI 

robots developed with human-like skin and warmth, as well as safety 

measures to mitigate electrical shocks or worse.

Whether applied to banking, healthcare, transport, or anything else, 

humanity is at the beginning of a juncture where humans engage with AI 

agents as frequently as though they too are humans. Where humans have 

limits as to the amount of attention, kindness, compassion, and energy 

they can expend, AI bots are an infinite resource for developing and 

maintaining relationships.

 Behavior and Addictions
Our behaviors are already influenced and manipulated by technology. 

Web landing pages, shared links, and user experiences are optimized 

through multivariant testing. This is a crude algorithmic approach to 

capture human attention. In the 2017 US Elections, Donald Trump’s 

campaign famously used and tested more than 50,000 ad variations daily 

to micro-target voters.[104] Human experimentation has been taking place 

for centuries, so this is nothing new. However, there is now the ability to 

influence choice and freedom like never before. Organizations have a 

moral responsibility to analyze the impact of AI and safeguard particular 

groups of people, including vulnerable adults and children, from 

manipulative tools like nudging or social proofing. Codes of conduct for 

behavioral experimentation within technological experiments is required.

Technology addiction is becoming a growing concern. Robert Lustig, 

a professor at the University of Southern California, discovered that the 

human brain responds to technology in a similar way to other addictive 

substances.[105] Internet addiction has been documented in a variety 

of countries; and adolescents appear to be more at risk, partly due to the 

prefrontal cortex being the last part of the brain to develop. According 
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to the charity Action on Addiction, one in three people is addicted to 

something.[106] In 2015, a 38-year-old man was found dead after playing 

video games for five days in an Internet cafe in Taipei.[107]

Real-world and academic evidence demonstrates that technology 

addiction is a mounting issue. AI has the potential to improve productivity 

and discovery. However, humankind is responsible for taking measures 

to prevent AI leading to destructive, digital addictions that make us more 

insular, overdependent, and lethargic.

 Economy and Employment
What happens after the end of jobs? Supermarkets already use automated 

checkouts, and even McDonalds have already replaced the human-

to- human food ordering procedure with a digital interface.[108] The 

hierarchy of labor is concerned primarily with automation, and this is 

also true of healthcare. Pharmacies, assembly lines, and check-ins are 

all commonly automated systems. Although this appears a concern for 

humankind, it can facilitate more complex roles for humans, moving the 

species more from physical work to cognitive labor.

Healthcare organizations exploring the use of AI are understanding 

how to retrain or redeploy their staff, rather than make them redundant. As 

these AI systems become increasingly common and grow in capacity and 

accuracy, conversations are moving past manual and cognitive labor to 

how specialisms such as radiology will be affected. Healthcare teams that 

use image processing AI, for instance, are increasingly confronted with the 

dilemma of what to do with teams of specialists. AI can be used to redirect 

resources to amplify patient care, with more opportunities to engage with 

patients and their treatment. AI can be understood as an efficient and 

effective tool that can analyze and detect patterns in patient data at a rate 

and efficiency inconceivable to humans, with little misinterpretation. 

However, AI should be seen to augment a human’s natural knowledge and 

intellect rather than be left to make a final decision.
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Healthcare is unique in that a digital-only approach is inconceivable. 

It appears that human intervention will always be required to mitigate risk 

and confirm predictions. Even with the most sophisticated AI, 53% of 1,000 

respondents to a Diabetes.co.uk survey stated they would want human 

verification of a machine-led diagnosis.[109]

 Affecting the future
There are many indications that how people are using technology is 

changing how children and adults develop. Among many things, research 

now demonstrates too much screen time is associated with structural and 

functional changes in the brain, affecting attention, decision-making, 

and cognitive control.[110] Another study of 390,089 people by the 

University of Glasgow found an association between a high level of time 

in front of a digital display and poor health.[111] Screen consumption 

time is considered to be sedentary behavior. Excessive screen time has 

been demonstrated to impair the brain, particularly the frontal lobe, 

which is used by humans in all aspects of life. The next few decades will 

illustrate the implications of connected technology on human physiology, 

psychology, evolution, and ultimately survival.

 Playing God
Engineers from the University of Adelaide developed an AI agent that was 

able to predict when you were going to die. The AI agent analyzed 16,000 

image features to understand the signs of diseased organs.[112] The neural- 

network- based AI model was able to predict mortality within 5 years with 

a 69% accuracy rate. Enhancements in data access, AI, and predictive 

analytics is enabling humans to predict more precise morbidity and 

mortality risks, which reignites the debate as to whether AI is playing God 

or enabling humans (facilitated with a data-driven approach) to play God.
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 Overhype and Scaremongering
The capabilities of AI have been historically overhyped through marketing 

and simplified media representations. Media scaremongering, along with 

more public breaches of data, have also not helped the cause of AI. There 

is a fog of confusion and misconception, particularly over the possible 

use (and misuse) of data and outputs, which needs to be resolved for 

stakeholders to seriously consider implementing AI into healthcare systems.

 Stakeholder Buy-In and Alignment
It is pivotal to ensure all stakeholders are aligned in the health intelligence 

a project can provide and how it will be used. For instance, developers of 

AI for healthcare applications may have values that are not always aligned 

with the values of clinicians. There may be the temptation, for example, 

to guide systems toward clinical actions that would improve quality 

metrics but not necessarily patient care, or skew data provided for public 

evaluation when being reviewed by potential regulators.

 Policy, Law, and Regulation
The next decade will provide a pivotal juncture in the ethics of AI. 

Regulation in the form of laws, ethical guidelines, and industry policy will 

influence the direction of machine learning. So too is machine learning 

influenced in the absence of such policies and where much of the risk is 

considered to lie. By failing to set a perimeter of acceptability, we open the 

risk of wider unintended consequences.

Technical governance is needed, particularly for the application of AI.  

It is vital to engage key opinion leaders, stakeholders, lawmakers, and 

disruptors to form and nurture these policies to ensure the potential of 

machine learning is realized without undue restriction. Applications of 
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AI in non-healthcare sectors have demonstrated that there are potential 

ethical problems with algorithmic learning when deployed at scale.

Lawmakers and critical stakeholders in the legal decision-making 

process must understand the complexities of AI and welcome the challenge 

of the first-time problems it brings. Furthermore, it cannot be assumed that 

AI will be solely used for benevolent purposes: AI is already used in warfare, 

with the United States and China spending heavily.[113] (Interestingly, the 

UK has decided to focus on AI ethics.)[114] Healthcare professionals using 

AI must understand how deployed AI algorithms are created, assess the 

data used for modeling, and understand how the agent can safeguard for 

mistakes. Regulators must be prepared to handle each concern individually, 

as all AI is individual, akin to humans. Safe and inclusive AI development 

will only be achieved through a diverse, inclusive, and multidisciplinary 

team of engineers, humanitarians, and social scientists.

International engagement between organizations and governments on 

the critical topics raised by AI is a must. Questions of ethics, responsibility, 

employment, safety, and evolution are examples of conversations that 

will require stakeholders from the public sector, private sector, and 

academic sector to collaborate as AI embeds itself in society and to ensure 

humanity’s democratized prosperity.

 Data and Information Governance
Implementation of AI in healthcare requires addressing ethical challenges 

such as the potential for unethical or cheating algorithms, algorithms 

trained with incomplete or biased data, a lack of understanding of the 

limitations or extent of algorithms, and the effect of AI on the fundamental 

fiduciary relationship between physicians and patients.

A data governance policy is a documented set of guidelines for 

ensuring the proper management of an organization’s data—digital or 

otherwise. Such guidelines can involve policies for business process 
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management (BPM) and enterprise risk planning (ERP), as well as 

security, data quality, and privacy. This differs from information 

governance, which is a documented set of guidelines for ensuring the 

proper management of an organization’s information. An information 

governance policy would cover the use of predictive analytics outcomes. 

An ethical code of conduct or ethical governance policy would cover the 

organization’s direction and intent and steer governance.

 Is There Such a Thing as Too Much Policy?
There is a possibility of too much policy, hampering progress and 

disengaging stakeholders. AI has fueled innovation across all industries 

including digital health. Start-ups have led the way for AI pervasiveness 

because of less bureaucracy and red tape compared to organizations 

that are larger and typically slower to respond to environmental change. 

Audit your policies to ensure space for listening to the user’s voice and 

incorporating it into cycles of ethical innovation.

 Global standards and schemas
There are several bodies that exist that share common codes of ethics 

and responsibility, but no globally enforced schematics. An AI agent 

that predicts your risk of death has little validation other than you, or 

someone else it has predicted on, dying. How should such an agent be 

verified? To which standards must it uphold? Must the agent, or its creator, 

provide evidence? As yet, AI has no defined industry standards to which 

technologies are tested against. As such, it is difficult to be assured of the 

quality of the AI you are engaging with. And in a fast-paced industry such 

as AI, the concerns presented are novel and immediate. Global standards 

are required to set a minimum expectation of AI systems.
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Healthcare also suffers from a time lag from evidence-based to clinical 

acceptance. For example, people with type 2 diabetes have placed their 

type 2 diabetes into remission for well over a decade, but health systems 

have been slow to be able to register a patient as placing their type 2 

diabetes into remission. Thus, patients have historically either been 

labeled as having reversed their type 2 diabetes or as living with type 2 

diabetes. If patients were labeled as having reversed their diabetes, they 

often would not receive the tests that confirmed their type 2 diabetes was 

in remission and were at risk of not receiving checks. Equally, if the patient 

was labeled as having type 2 diabetes (and did not), this has an impact 

on insurance and is technically untrue. Collaboration on schemas and 

parallel strides of adoption would help to reduce international disparities.

 Do We Need to Treat AI with Humanity?
The basic concept of reinforcement is parallel to how humans and 

other animals learn. For instance, when training a dog, compliant and 

expected performance is often rewarded with a treat. Noncompliance by 

a reinforcement learning system is met with punishment. This is similar 

to reinforcement learning by an AI agent, where we build mechanisms of 

reward and punishment. Positive performance is reinforced with a virtual 

reward, and negative actions are penalized to augment avoidance.

The majority of AI systems are currently fairly simple and reductionist. 

As AI develops, we can expect them to become more complex and lifelike. 

Humans are already beginning to develop relationships with robots, 

in many cases seen as replacements for another human whether for 

companionship or carnal desire. It could be considered that a penalty 

input to an AI system is a harmful or negative input. Are genetic algorithms 

that delete generations that are no longer of use a form of murder? At what 

point do we need to consider AI’s humane treatment is catalyzed when AI 

systems can mirror both human behavior and appearance?
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If AI systems are considered to be able to perceive, feel, and respond 

to stimuli, it is not a huge leap to consider their place as a species, legal 

status, or even nationality. An AI agent made in America was even given 

Saudi Arabian citizenship.[115] Should AI be treated like an animal of 

intelligence comparable to humans? Can machines truly feel and suffer? 

The moral questions of how we treat AI agents, mitigate suffering, and 

the risk of negative outcomes are fundamental to responsibly progress AI 

toward its immense potential to better the lives of humanity.

 Employing Data Ethics Within Your 
Organization
Many organizations have a code of conduct that serves as an internal 

communication on expected behaviors, requirements, and engagement 

and provides external stakeholders confidence and reassurance. Codes 

of conduct should be shared with employees alongside appropriate 

training to ensure the code of conduct is understood and observed. All 

stakeholders of an organization should practice and promote the code of 

conduct adherence.

 Ethical Code
A code of ethics or ethical code is a document that is used to govern the 

moral conduct of an organization. A code of ethics demonstrates that 

an organization is committed to responsible business and technological 

progress.

The code of ethics narrates the behaviors that are promoted by an 

organization and those that are considered harmful to the organization’s 

own moral compass, reputation, or clients. It may not cover actions that 

are illegal, but it will typically state the repercussions of noncompliance 

and how such violations can be reported. Employees should be made 
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aware of items that are not obvious to them and then facilitated to avoid 

inadvertent yet potentially harmful actions. A code of ethics should also 

include a summary of the motivations for using data and its purpose in 

the organization’s ambition—and reflect the profitability, integrity, and 

reputation of a business.

A code of ethics should be free of technical and philosophical jargon 

and directly communicate the expectations required of employees. Keep 

it simple and right to the point. Set the expectations for new employees at 

the time of joining and develop an organizational culture of adherence. 

Ensure all stakeholders are aware of amendments and reviews. Rather 

than only referring to the code of conduct to recruits or clients, refer 

to the ethical code frequently to engrain the ethical direction of your 

organization among internal and external stakeholders. Refer to the 

code of ethics when examining the ethical risks of incorporating new 

technologies into the decision-making process.

When developing your code of ethical conduct from scratch, consult 

employees and stakeholders for their contributions. Questions to consider 

asking include the following:

• What does AI ethics mean to you?

• How can what we do improve humanity?

• How should our organization act responsibly in its 

ambition to [insert ambition here]?

• What are the potential benefits of what we would like to 

achieve?

• What are the potential disadvantages of what we would 

like to achieve?

• How can we improve our ethical code?

• Are there items in the code of ethics that are confusing 

or require more explanation?
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• Is the code of ethics useful in making decisions?

• Are the organization’s ethics in alignment with your 

own ethical viewpoints?

Once all of the preceding questions are answered by different segments 

of the organization, a consensus can be reached on an implementation 

plan. An organizational code of ethics serves as a reference point for 

disciplinary actions for those who fail to meet the standards. The code of 

ethics provides a solid foundation for identifying and dealing with ethical 

challenges.

 Ethical Framework Considerations
Organizations have a responsibility to be ethically guided in the collection 

and use of patient data. Organizations require a data privacy approach that 

prevents breaches and enforces security. Failing to adhere to regulations 

can lead to fines, reputational repercussions, and the loss of customers. 

There are various ways to mitigate the risks of data collection while taking 

advantage of the opportunities big data has to offer. There are several 

techniques to safeguard ethical data collection.

 Collect the Minimal Amount of Data

The first step toward protecting user data is collecting only the data that is 

required for the task at hand. More data does not always mean more useful 

data. Although machine learning typically welcomes more data, data 

collection must be kept deliberate and concise. For instance, there is little 

to no use in knowing someone’s ethnicity and BMI if they are applying 

for a credit card; but this same data is important when determining an 

individual’s risk of type 2 diabetes.
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 Identify and Scrub Sensitive Data

All sensitive data should be identified and secured. Data scientists 

should be aware of what data is deemed personal and how to use such 

information. For instance, data collected on consumers that is collected 

without their consent should be scrubbed of personally identifiable data. 

It is paramount that only individuals with the appropriate permissions can 

observe sensitive data. Many organizations also discourage the use of USB 

sticks and external data drives to ensure data remains safe and on-site.

 Compliance with Applicable Laws and Regulations

Trust in your organization’s approach to data, and information 

management can be garnered through adherence to appropriate local 

and national standards, policies, and laws. There are several data and 

information governance laws and regulations that set the boundaries 

of legal and appropriate data usage. It is vital that all regulations are 

abided to. Bodies such as the FDA and MHRA (Medicines and Healthcare 

products Regulatory Agency) set boundaries for the legal, ethical, and 

compliant collection, usage, and management of data. Compliance 

with GDPR and approval from governance-related accreditation bodies 

demonstrates your organization’s approach to ethical data usage and 

builds trust with your users.

Many national- and international-level standards will have a fair 

degree of overlap, requiring appropriate data reporting, documentation, 

transparency, and risk mitigation procedures. Within Europe, for example, 

adherence to regulations such as GDPR is a necessity and regulates over 

27 countries in the European Union. International standards such as ISO 

27001 ensure good data and information management standards. ISO 27001 

(formally known as ISO/IEC 27001:2005) is a specification for an information 

security management system (ISMS). An ISMS is a framework of policies 

and procedures that includes all legal, physical, and technical controls 

involved in an organization’s information risk management processes.
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Many data regulations are self-accredited. This means that as an 

organization, you must collect the documentation required to demonstrate 

adherence to standards without the requirement for it to ever be verified 

by an external body. The concerns of self-accreditation are apparent, 

particularly when applied in healthcare.

Robust data and information governance is the foundation of data ethics.

Thorough data and information governance is the foundation of 

data ethics. Governance is concerned with how data and information is 

protected in its collection, use, analysis, and disposal. Good governance 

covers a variety of topics including data architecture, infrastructure, 

risk assessments, audit reports, risk treatment plans, design workflows, 

information security policies, complaint procedures, medical governance, 

corporate responsibility, and disaster recovery planning. An organizational 

ethical code steers the direction of good governance.

 A Hippocratic Oath for Data Scientists
Data scientists with access to sensitive data are typically required to sign 

documentation to ensure they comply with risk mitigation and security 

policies when they begin employment. It has been suggested that to 

engrain a culture of safety and positive progression in AI, data scientists 

acting in digital and nondigital sectors pledge allegiance to a Hippocratic 

oath to do no harm. This would sit alongside regulations, internal 

manifestos, standards, and codes of conduct operated by an organization.

 Auditing Your Frameworks
Conduct regular auditing of ethical, data, and information governance 

procedures and rehearse worst-case scenarios to ensure that if the worst 

were to happen, your organization would be able to minimize as much risk 

in as little time as possible. Risk mitigation drills should be rehearsed at 

least twice a year.
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Review each section of your code of conduct to ensure it represents 

the values of your organization. Technology organizations move rapidly, 

so ensure compliance with the latest standards, guidelines, and policies 

relevant to your industry. Organizations operating with medical data may 

come up with new methods of prediction, or new AI abilities. Consider 

aspects of your code of conduct that are missing, particularly if your 

organization is scaling, or facing new use cases. For example, a historically 

business-orientated organization that begins to engage with patients will 

require a new section of engaging with patients.

There is no reason not to engage every member of staff in developing 

and reviewing your code of conduct. Digital surveys are a quick and easy 

way to funnel opinion. Diverse contributions make for diverse, inclusive, 

and multidisciplinary approaches to AI. Ask for comments on new sections 

or concepts you feel employees should be aware of. Conversations can 

highlight areas in which employees may need further training, awareness, 

or demonstration. Develop a dialogue with employees to engrain the 

organizational culture within the wider team and foster an ethically aware 

environment. Having the maximum number of stakeholders on board 

with your organization’s code of conduct will likely increase employee 

motivation and productivity.

An ethical framework in healthcare organizations, particularly for 

those using AI, provides internal and external stakeholders the security, 

transparency, trust, and direction required for maximizing engagement. 

Adhering to industry standards and involving members of your 

organization in developing and maintaining the ethical framework will 

accelerate employee and organization-wide adoption. Moreover, good 

policy documentation, training, and auditing help maintain the integrity of 

organizational AI.
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CHAPTER 7

Future of Healthcare
“Medicine is at a critical juncture where it is necessary to keep 
up with the speed of discovery in the real-world.”

—Charlotte Summers

Connected healthcare and AI, when applied to healthcare, brings with it 

the ability to transform the lives of communities globally. People demand 

more today than ever before, and healthcare is expected to keep up in 

a golden era of innovation at the same time as a paradigm shift from 

healthcare volume to value—patient numbers to patient outcomes. As 

awareness of AI in healthcare grows, so too does public expectation that it 

will be used to improve day-to-day experiences.

New advances in medicine and concepts that were once the futuristic 

topics of science fiction are gradually becoming a reality. Gene therapies, 

3-D printing of human organs, liquid biopsies, robot-assisted surgeries, 

and voice-enabled personal assistants are now realities that are becoming 

more sophisticated as time goes on. Advancements in technology are 

affecting not only practiced medicine but the public perceptions and 

attitudes toward health, lifestyle, and what it means to be healthy. 

Healthcare must implement innovation wisely to engage as many patients 

as possible. Digital health technologies evolve at a lightning pace. The 

impact of data science, AI, machine learning, and connected healthcare 

technologies is tremendous and requires an unbiased mind and 

willingness to engage in a continually evolving environment with as much 

knowledge as possible.
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 Shifting from Volume to Value
Healthcare itself is transitioning from a volume- to patient-centric value. 

There is a shift in medicine in which pharmacology is not the first and only 

line of treatment; and there is a greater emphasis on the role of lifestyle as 

medicine for preventative and therapeutic purposes.

Traditional payment systems in healthcare are grounded in rewarding 

providers for the volume of patients referred and treated. Volume-based 

care focuses on economies of scale. Providers receive a discrete amount 

of money for all of the services provided to patients for a set duration of 

time. Value for money, patient experience, and healthcare quality are 

subsequently secondary considerations for evaluation. Providers are 

incentivized by patient volume and the cost of the overall care provided 

to patients. Healthcare resource and cost pressures, exasperated doctors, 

and incentivized clinicians have unknowingly facilitated a “see as many 

patients as possible” approach that has driven disease management from a 

medication-first, patient-second perspective. Hospitals and clinicians are 

incentivized to see as many patients as possible, conduct as many tests as 

possible, and approach disease from a medication-first perspective.

As a result, volume-based care models are typically modeled on 

financial metrics such as optimizing profit or minimizing cost per patient 

rather than health outcomes.

Volume-based care payment systems often penalize providers 

financially for keeping people healthy, error reduction, or complication 

reduction, as they are not a driving KPI. For instance, if you were to be 

diagnosed with type 2 diabetes, your healthcare team would typically do 

the following:

• Be given information on how to manage blood glucose 

levels per current guidance.

• Progress on a treatment regime.

• Be given information about dietary choices.
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In the UK. for example, if a doctor’s surgery or clinic were to enable 

the patient to realize type 2 diabetes remission, the surgery or clinic would 

fail to receive the money it would have for the drugs no longer prescribed 

to the patient. Personal biases can also complicate matters. In the UK, for 

example, doctors involved in assessing which drugs should be prescribed 

to NHS patients were found by The Telegraph to have received £100,000 

per year from pharmaceutical companies.[116]

Volume-based care is focused on a finite amount of money for a 

population. With populations growing and resources stretched, the 

evolution toward value-based care has been expedited. Healthcare is now 

in a transition toward patient-based care, which is synonymous with value, 

rather than volume.

Tseng et al. defined the value in healthcare to be the quality of care, 

typically measured through healthcare outcomes.[117] A value metric 

also for consideration is patient experience or patient-centeredness. 

Patient- centeredness is an important but not necessarily dominant quality 

measure for value-based care. Patient-centered care utilizes a multifaceted 

approach, revolving around the patient, their goals, and the wider family in 

decisions and evaluations. There are several domains to patient-centered 

care, which includes patient-centeredness.

Patient-centered care is a collaborative and multifaceted approach 

involving delivering health and social care focused on patient experience 

and patient outcomes. Patient-centered care focuses on empowering 

patients with the knowledge and experience, skills, and confidence to 

manage and optimize their health. Care is compassionate, personalized, 

coordinated around the patient, and respectful of the patient’s 

worldview. These goals may appear commonsense for healthcare 

practitioners. However, they have not always been performed as standard 

practice. Healthcare has typically been reductionist in its approach, 

addressing a sum rather than the whole and acting for patients rather 

than with patients.
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Organizations like Buurtzorg Neighbourhood Care in the Netherlands 

are an exemplars of patient-centered care. The organization delivers 

care to 80,000 patients a year with 10,000 nurses, 21 coaches, and two 

managers.[118] The collaborative approach focuses on empowering 

patients through relationships with caregivers. Over time, patients see 

improvements in health status while the total external care time required 

is reduced. Patients and families are enabled with the skills and confidence 

to look after themselves.

Although two distinct philosophies, patient-centered care and 

value-based care are becoming synonymous. Definitions of success 

incorporating patient-centered outcomes, perspectives, experiences, and 

preferences are positively influencing quality and delivery of care.

Value-based care does not mean cheap or economy care. Indeed, care 

is evaluated through the quality of patient experience and outcomes; and 

the model reshapes how care is received by patients.

Wellness and prevention are emphasized in value-based care. Lifestyle, 

behavior, and environmental factors account for 90% of disease risk.[119] 

This has been evidenced by the growing prevalence of type 2 diabetes 

across the world. With growing pressure on healthcare resources, lifestyle 

medicine has silently refocused efforts on the role of lifestyle as medicine. 

Evidence demonstrates that activity, nutrition, sleep, and stress all impact 

physical and emotional health markers.[120] Lifestyle medicine’s focus 

on lifestyle and behavior enables healthcare professionals to deal with 

reversible, non-communicable diseases such as type 2 diabetes and 

hypertension. Rather than treating the patient in a reductionist approach, 

the patient is provided with holistic, compassionate care. The prescription 

of lifestyle medicine is already taking place in healthcare, with digital 

applications prescribed to treat disease. Type 2 diabetes patients, for 

example, may be prescribed the Low Carb Program app from Diabetes 

Digital Media, demonstrated to place type 2 diabetes into remission 

for 1 in 4 patients.[121] Lifestyle interventions are typically safe, easy 

to implement, and scalable. Growing levels of chronic disease can be 
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mitigated with a simple approach delivered in an engaging and effective 

setting.

Instead of reacting to events, there is a preventative, lifestyle-first 

approach to health in value-based care. The focus is on patient wellness, 

healthcare quality, and efficiency. This is where patient data, digital health, 

and AI hold a fountain of promise. The emphasis on efficiency ensures 

that the approach is scalable and effective, enabling providers to reduce 

healthcare costs and improve patient clinical health outcomes. Prevention 

of disease through quitting smoking, nutritional change, lifestyle change, 

activity, sleep, and identifying genetic risk factors reduces the burden on 

healthcare resources. Wellness is becoming incentivized. It has become 

the best interest of insurance companies and healthcare providers to 

monitor their patients’ health more closely. Start-ups and digital technology 

companies are developing digital health tools that are disrupting the 

traditional doctor–patient relationship and have enabled providers to 

become third actors involved in facilitating sustained health. The goal 

of value-based care is to standardize healthcare processes through best 

practices and to democratize access and quality of care. Mining of data and 

historical evidence can determine which methods work and which don’t.

Keeping people well reduces healthcare delivery costs and optimizes 

the use of resources. For instance, when managing a chronic condition 

such as type 2 diabetes, value-based care uses a collaborative and 

multidisciplinary approach to managing the disease to prevent  

diabetes- related complications. Patients engage with one healthcare team 

that is aware of patient progress and health status. The healthcare team 

may contain the patient’s diabetes nurse, dietician, behavior health coach, 

and other professionals to support patient progress. The team would set 

patient-centered goals and help a patient with the following:

• Maintain blood glucose control.

• Introduce a digital community of people with type 2 

diabetes for support.
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• Provide health mentoring and habit maintenance 

support.

• Facilitate an activity program.

• Use the latest evidence base to provide nutritional 

guidance.

• Deal with the psychological aspects of type 2 diabetes.

Incentivization is transformed. Take a hospital setting, for instance, 

in which rather than being paid on how many patients could be seen, 

the hospital is being compensated based on the opposite. The hospital is 

paid based on how many patients are in positive health status and how 

many beds are available. The focus moves from the point of hospital 

admission to predicting the likelihood of future risks and anticipating 

them with preventative solutions. As well as face-to-face delivery, ongoing 

patient support can be provided digitally, for example, with health 

coaching, delivering an exercise program, or help with mental health 

concerns through apps, wearable technology, or telemedicine. AI and 

predictive analytics enable healthcare providers to optimize the delivery 

of healthcare, focusing on preventing and treating disease. Value-based 

care can utilize low-cost digital technologies to enhance and democratize 

care. The simultaneous collection of behavioral, demographic, health, 

and engagement data provides an opportunity for machine learning and 

development of novel AI, to rapidly improve, and learn from, user behavior 

and outcomes.

Managing healthcare operations and subsequently evaluating 

healthcare quality is complex. To assess a value-based care model, 

healthcare organizations must collect and analyze data, objectively 

assessing performance through the quality of care, patient health 

outcomes, and efficiency of cost. Providers can report and model 

preventative care metrics such as hospital readmission rates, error 
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rates, disease progression, population health improvement, and 

engagement strategies. Healthcare quality is defined by several metrics. 

Patient experience and satisfaction scoring is typically the first metric of 

evaluation. Metrics such as time spent per patient, patient engagement, 

medication savings, and adherence are examples of quality that relates to 

productivity.

Many applications of AI in healthcare are within a hospital setting. 

Hospital management platforms are delivering a return on investment 

by enabling organizations to prepare. Systems that predict times of 

peak patient traffic, predict readmission times, and use real-time data 

to cope with the demand of real-world healthcare are seen as long-

term systems of value to healthcare providers. Applications involved in 

improving clinical care demonstrate enormous potential. Long-term 

studies are required to evaluate the impact on disease management 

and population health.

 Evidence-Based Medicine
Evidence-based medicine is underpinned by decision-making that is 

based on the latest, most reliable scientific evidence. As shown in  

Figure 7- 1, it is an approach to solve a clinical problem by integrating 

best research and clinical evidence with real-world clinical expertise and 

patient values. In the case of healthcare, this is deemed to be randomized 

controlled trials and increasingly real-world evidence. Datafication 

and the IoT are contributing significantly to the evidence base. David 

Sackett, a pioneer of evidence-based medicine, defined the concept as 

“the conscientious explicit and judicious use of current best evidence in 

making decisions about the care of individual patients.”[122]
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Interestingly, the traditional evidence base for pharmacology has 

been demonstrated to be biased, leading to questions over validity.[123] 

Randomized controlled trials (RCTs) are deemed as the most robust and 

reliable form of evidence for assessing the efficacy of a treatment. Evidence 

demonstrates that many factors can influence the reliability of RCTs, 

including methodological quality, reporting quality, and source of funding. 

Pharmaceutical companies fund the majority of clinical research that is 

undertaken on medications and face a conflict of interest. Studies have 

demonstrated bias in favor of industry in research funded by industry, 

which undermines confidence in medical knowledge.

Real-world evidence comes at a critical juncture for evidence-based 

medicine. Real-world evidence is disrupting traditional evidence- 

based hierarchies and approaches. Datafication of human experience 

through mobile phones, social media, digital communities, health apps, 

nutrition tracking, wearables, and health IoT has empowered patients 

to become their own evidence base and influence healthcare academia 

and understanding. Patients, for example, can compare the results 

Figure 7-1. Evidence-based medicine
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of different hospitals, or even individual doctors, to best choose their 

treatment providers.

Most RCTs conducted within pharmacology are internally valid, 

ensuring an exact population is involved in the testing of a particular drug. 

For example, a trial for type 2 diabetes medication may focus on people 

who have type 2 diabetes only and no other comorbidities; whereas in the 

real world, the comorbidities of hypertension and high cholesterol are 

often present in people with type 2 diabetes. This approach means there 

is often a gap between what is reported in RCTs and what is reported by 

patients. This is where digital technology can help bridge the gap between 

pharmacological intervention and real-world patient experience. Digital 

communities, for example, can provide real-world evidence on medication 

side effects. As an example, health community Diabetes.co.uk provides 

medication side effect data back to pharmaceutical organizations through 

a mobile application in the form of analysis of patient discussion and 

reported side effects. The world’s second-most commonly prescribed 

drug for diabetes, Metformin, for instance, has a side effect of diarrhea 

reported to affect 1 in 10 people taking the drug. Real-world evidence from 

Diabetes.co.uk members demonstrates this is 400% more common and 

reported by over 48% of people with type 2 diabetes.[124]

Real-world evidence has historically been viewed as anecdote by the 

medical community. However, the datafication of patient lives now means 

that data is directly received from devices, wearables, and sensors, ensuring 

that data cannot be misreported. Real-world evidence is growing at a pace 

that healthcare is struggling to keep up with. Digital health platforms and 

the aggregation of data also calls into question previous paradigms of 

medicine. The Low Carb Program from Diabetes Digital Media, for instance, 

was able to aggregate data from 100,000 people to demonstrate that a low-

carbohydrate diet could be used to place type 2 diabetes into remission. 

Type 2 diabetes was considered, 5 years ago, to be a chronic and progressive 

disease. Big, real-world evidence is proving that it doesn’t have to be.
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It is a necessity for evidence-based medicine to keep up with the 

developments of real-world evidence. As David Sackett said, “half of 

what you learn in medical school will be out of date in 5 years of your 

graduation; the trouble is nobody can tell you which half. The most 

important thing to learn is how to learn on your own.” Patients now use the 

Internet, themselves, and their peers as the evidence base; and ubiquity 

of real-world evidence and AI in healthcare means that healthcare 

professionals can no longer be ignorant to change in the evidence base 

and biased toward old paradigms.

This data is a wealth of opportunity for AI and machine learning. 

Healthcare can adopt a data-driven approach, utilizing a variety of 

data sources to improve the patient experience and reduce costs. The 

exploration of this data over the ensuing decades will significantly progress 

healthcare and facilitate precision medicine.

 Personalized Medicine
Around 10% of disease risk is based on genetics.[125] Each person has 

a unique version of the human genome. Groups of particular patients 

may share common genome characteristics and thus the risk of disease. 

For instance, research demonstrates people of South Asian descent have 

a higher prevalence of type 2 diabetes compared to British Caucasians 

in the United Kingdom.[126] Personalized medicine, also known as 

stratified or precision medicine, is an approach that stratifies patients 

into groups and makes informed clinical decisions for the delivery 

of treatment and interventions based on the patients’ anticipated 

response. Personalized medicine approaches to disease management 

are tailored to the patient. Patient health is managed on an individual 

level to achieve the most optimal state of health possible. For example, 

our genetic variations determine how our bodies would respond to a 

particular drug. One drug might not fit everyone’s requirement. Two 
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people taking the same dose of the same drug might respond differently. 

Using personalized medicine, a right combination of a drug and its dose 

can be selected for everyone. This approach to medicine is not new, and 

healthcare professionals have been using this approach since the time 

of Hippocrates. However, the hyper- personalization achievable from the 

use of the patient genome and its falling cost—and medical data from 

health records, wearable technology, and the health IoT—has roused the 

public interest once again. It has never before been possible to predict 

the risk of disease, how the human body will respond to a particular 

medication, or print treatments out of materials other than ink. The 

combination of these technologies will fuel an era of personalized care 

and healthcare innovation.

Predictive tools can be used to evaluate health risks and develop 

personalized healthcare plans to mitigate patient health risks, prevent 

disease, manage disease, and treat a disease precisely if it occurs. As 

healthcare becomes increasingly personalized for patients in both 

treatment and service delivery, it is critical that access is widened to ensure 

participation from all groups of society.

Diagnostic tests, such as blood tests, are typically used to identify 

appropriate treatments based on a patient’s physiological analysis. The 

selection of optimal therapies will be increasingly personalized to the 

patient genome. Healthcare providers will be able to diagnose current 

illnesses, predict future risks of diseases, and identify predicted response 

to treatments and subtle traits within an instant. Genetic testing has 

started to make an impact in personalized medicine; DNA results are 

limited to being imported into services that can personalize treatment 

regimes, diet plans, or education to a patient. Currently, DNA test results 

take weeks to receive. An era of instant genetic test results will empower 

patients to make informed choices about treatment, services, products, 

medications, and outcomes.

Raising serious ethical issues, the decision to have a genetic test and 

the implications of its results deserves careful preparation and thought. 
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For providers, it provides an opportunity to fully engage in personalized, 

value-based care, with the quality of patient experience paramount. For 

patients, it can pinpoint genetic mutations that predispose a person to 

disease. The physical and mental consequences of such knowledge can be 

profound and have caused controversy among the medical establishment 

and general public. A natural division among all people, regarding specific 

issues, is to be either for or against the topic of discussion. Progress is 

not without moral consequence, and legislation must endure the speed 

at which first-time problems are occurring. People are conflicted about 

having a lot of information about themselves.

 Vision of the Future
Within the next decade, DNA profiling of the embryo will take place from 

within the mother’s womb, which will create an immediate profile of the 

person’s health status and risk of disease and enable the development 

of health and lifestyle treatment plans from the beginning of life. Ethical 

concerns in fertility will move to tackle making decisions based on an 

embryo’s genetic status. Genetic profiling will also make it quicker to 

detect potential concerns and alter or delete potential genetic defects 

or characteristics that are unfavored. Predisposition to disease will be 

estimated, with healthy life care plans developed for patients to follow as 

a daily routine. Patients will constantly be monitored, with their data fed 

back to update their health records and focus on optimal wellness—driven 

through innovation in wearable technology, innovation in medicine, 

healthcare delivery, the IoT, and smart homes, smart cities, and smart 

communities.

Patient data aggregation will facilitate the understanding of baseline 

health and enable healthy people to be algorithmically visualized. Data 

monitoring and predictive analytics will instantly alert health professionals 

and patients should there be a deviation to the norm—alerting users 
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to poor health, possible illness, or nudging the user over an unhealthy 

lifestyle. One will be able to download a clinically validated app that would 

be able to detect, diagnose, and treat many diseases before attending a 

physical doctor’s surgery. Sensors will become far less invasive—chips 

under the skin and smart tattoos that keep constant connectivity.

Visiting the doctor’s practice will be very different. Your digital personal 

assistant, perhaps Siri or Alexa, may suggest you see the doctor based 

on your voice sounding ill, or at least different. Social media platforms, 

health communities, and phones will alert you to mental health problems 

based on what you type. No matter whether it’s a hospital in Malibu or 

Manchester, your health record will be accessible and available on your 

phone and validated through a distributed ledger such as Blockchain, to 

which healthcare providers would continue to add to over time.

Advancements in robotics, automation, and digital health enable 

healthcare professionals to focus their time where needed most: with 

patients. Using a combination of data collected from the patient’s 

everyday life, phone, wearables, health sensors, connected clothing—and 

combining that with clinical tests, scans, and check-ups—will allow much- 

improved analysis and monitoring and focus on health optimization. This 

is especially effective against non-communicable, chronic diseases like 

type 2 diabetes and tracking the progression of progressive conditions such 

as dementia. Both health providers and bill payers will incentivize patients 

to track symptoms and health markers to aid the treatment pathway.

Potential health concerns identified from patient data would trigger 

an alert to the patient’s doctor for validation by a human after initial 

AI investigation and prioritization. As a patient, treatment will be 

personalized, based on health records, genetic analysis, and AI analysis 

of patient data. Medicines will also include 3-D printed treatments 

and digital interventions delivered through mobile apps. Digital 

interventions, measured by engagement, and health outcomes, will be 

hyper-personalized, based on demographics, behavior, health, goals, and 

preferences. Discreet wireless sensors will allow instant notifications of 
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change, while algorithms and AI models will be used to diagnose disease 

and treat patients. Earlier diagnosis of health issues will become more 

common through constant monitoring before they become more serious.

Care will be delivered through a hybrid of digital and face-to-face 

engagement. Virtual and augmented immersive experiences will reinforce 

and maintain behavior change. Drones will deliver your medication 

to wherever you are unless your autonomous vehicle takes you there 

first. You will be instantly alerted when data sources report an adverse 

effect of your medication, and you will instantly be offered a best-suited, 

tailored alternative. A variety of integrated healthcare disciplines will be 

involved in patient treatment to ensure a holistic and human approach to 

healthcare. Innovations will allow doctors, nurses, and wider healthcare 

professionals to be freed up to do the more human parts of the job. Robotic 

AI will be used to carry out more physical tasks such as moving patients 

around, creating sterile environments, performing blood tests, radiology 

assessments, and so on.

Patient concerns will be dealt in, in real time. Should a patient be 

showing symptoms of atrial fibrillation, for example, a doctor may record 

a patient’s heartbeat on their tablet and upload it to a system that confirms 

or denies the doctor’s concerns. If irregularities are spotted, the video is 

instantly sent to a cardiologist who can provide a diagnosis and begin a 

personalized treatment plan for the patient. Appointments and follow- 

ups will take hours or days rather than weeks or months. A network of 

connected care means several experts can look at a patient’s concerns 

simultaneously and give second opinions.

Precision medicine is another emerging approach, which refers to 

modifying a medical treatment considering individual variability. For this 

measure, three additional data sets are added to existing traditional patient 

medical records: data about the patient’s environmental exposures, their 

lifestyle, and their genomic data.[127] This information can assist the 

doctors in identifying which approaches, treatments, and preventions will 

be effective for which patients.
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 Connected Medicine
Wearables and the IoT hold the key to connected medicine. Data 

captured by sensors in these contraptions are playing an increasingly 

powerful role in healthcare, facilitating the development of patient- 

centric healthcare systems. Many factors are accelerating the acceptance 

of wearable healthcare solutions, particularly their use in clinical trials 

and academic studies to monitor patient health and lifestyle factors. For 

example, studies can record participants’ health vitals using an Android 

Watch, Apple Watch, Garmin, Fitbit, or another smartwatch device. 

Participants use apps to record their lifestyle habits, nutrition, activity, 

and medication adherence and to monitor medication side effects among 

others. Wearables and patient data are beginning to be used by insurance 

companies to incentivize wellness. Insurance companies have historically 

targeted such insurance products toward digital-savvy buyers, offering the 

latest gadgets to incentivize health improvements. However, incentivized 

insurance products will become commonplace for wider populations, 

proving particularly effective in the combat against non-communicable 

diseases. The delivery of connected, digital healthcare opens an 

opportunity to monitor, manage, and reverse disease, broadening the risk 

portfolio and creating a longer-living, reduced morbidity population.

As sensors become faster, smaller, and more capable, patient health 

records profiles will eventually comprise of detailed sleep analyses, 

details of continuous blood glucose monitoring, heart rate, blood 

pressure, and approximate calorie burn. A smartwatch will combine 

a variety of diagnostic tools, able to monitor blood pressure, heart 

rate variability, blood glucose, ketones, and more. Health sensors will 

become embeddable, biodegradable, and constantly connected, playing 

critical roles in such tasks as patient care. It is worth noting that evidence 

demonstrates fitness trackers have a limited engagement lifetime and do 

not improve patient weight loss.
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Table 7-1 briefs some examples of connected medicine devices, 

explaining what device can be used where and why it can be useful. 

For example, immersive technology devices can be worn on the head 

for education purposes. Some of the wearables and embedded sensors 

include the following:

• Stress bands

Stress tracking and calming of the mind are two 

key markets for wearables. Wearables currently 

monitor breathing and heart rate, detecting signs 

of tension to improve breathing and the ability to 

reach a calmer state of mind. Fitness trackers offer 

mindfulness functions, and there are headbands 

that deliver waveforms to the brain.

• UV sensor

Northwestern University has developed UV sensors 

that precisely monitor a person’s UV light exposure. 

The wearable sensors, which are small enough to fit 

on a human fingernail, are wafer-thin. As a known 

and potent carcinogen, this has the potential to 

reduce overexposure to UV, complications such as 

heatstroke, and melanoma.[128]

• Smart tattoos

Smart tattoos place the sensor in the skin with 

significant strides made by researchers at MIT 

and Harvard.[129] Smart tattoo ink reacts with the 

biochemical composition of the interstitial fluid 

to indicate the status. Developments will allow for 
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tattoos to degrade, lasting for as long as required 

and even only displaying in particular lights. For 

instance, high blood glucose could turn a blood 

glucose smart tattoo red, whereas low blood glucose 

may turn the tattoo blue.

• Smart medication

There are many directions to which medication 

is being made smart. Smart medication can tell a 

patient and their respective healthcare team as to 

the amount of medicine consumed, the time it was 

taken, and provide timely reminders if it looks like it 

may be missed. Today, Bluetooth-connected bottle 

caps and pill packets provide reminders to patients 

to encourage medication adherence. Bluetooth 

insulin pens and pen caps that log the time, amount, 

and kind of insulin injected typically push data from 

the device to cloud, with users engaging in a digital 

app interface to query their data. Smart asthma 

inhalers, for instance, can identify an oncoming 

attack before the wearer recognizes the symptoms.

• Smart insulin

A form of smart medicine, smart insulin is next- 

generation insulin that responds automatically 

to changing blood glucose levels. The lower or 

higher blood sugar levels are, less or more insulin 

is released, respectively. In 2015, University of 

North Carolina researchers reported that their 
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smart insulin patch, which rests on the outside 

of the body, will use a system of micro-needles 

to automatically detect high blood glucose levels 

and administer insulin through live beta cells 

appropriately. Because the beta cells are kept within 

the patch on the outside of the body, there is zero 

danger of them being rejected by the immune 

systems of people with type 1 diabetes.[130]

Patients immediately turn to Dr. Google at the first sign or symptom 

of potential illness. Patients are best placed to understand what is 

happening to their body, now visiting the doctor more prepared than 

ever. More informed, more aware, and more health-conscious patients 

now attend appointments, with their engagement used to personalize 

their healthcare plans. However, this also causes varying degrees of 

mental anguish and hypochondria. Patients must not forget that qualified 

healthcare professionals provide a much more complete assessment 

and explanation of health, particularly if up-to-date with the evidence 

base. This is perhaps a contributing factor for why the medical profession 

has not always welcomed a patient-centric approach. A 2018 Diabetes.

co.uk survey reported 87% of patients had a better relationship with their 

healthcare professionals as the result of using the platform, with 75% 

reporting a better understanding of their condition. When this survey was 

conducted in 2015, the same number reported a better understanding of 

their condition, but only 20% of patients reported improved relationships 

with their healthcare team.[131]
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Table 7-1. Applications of wearable technology

What? Where? Why?

Immersive technology
Military apparel
Helmets
Mixed reality

head education  

Behavior change

Intelligence to intelligence 

communication

Smart contact lenses
Trackers

eyes Blood glucose levels

Hearing aids
Headphones
Trackers

ears Sound

Odor detection Nose Smell

Smart tattoos
Trackers
Patches
Implantables
Smartwatch  
Trackers

arms/Wrist Blood glucose

Blood pressure

oxygen saturation

Ketone levels

education

rehabilitation

Clothing
Chest straps
Implantables
Trackers
Exoskeleton

Body rehabilitation

Clothing legs protection

rehabilitation

Embedded footwear Feet health metrics

posture correction

rehabilitation
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Connected medicine provides a wealth of opportunity in solving novel 

health problems, particularly with disease management and elderly care.

In 2015, the United Nations approximated 1.2 in 10 people were over 

the age of 65. Projections estimate that this will jump to 22% by 2050.[132] 

Healthcare expenditure on the elderly is a mounting concern, as it accounts 

for a higher share of healthcare expenditure compared to other age groups. 

Equally, non-communicable diseases such as type 2 diabetes and obesity 

are pandemics, with the WHO estimating 600 million people will develop 

type 2 diabetes by 2050.[133] About 1 in 4 people suffer from two or more 

chronic conditions.[134] With rising pressure on governments, payers, and 

manufacturers to reduce healthcare costs, elderly and long-term care require 

solutions that are prepared for the impending rise in numbers. The Internet of 

Medical Things (medical IoT) demonstrates a tremendous potential to help.

 Disease and Condition Management
Non-communicable diseases including type 2 diabetes, hypertension, 

and cardiovascular disease can be monitored by both the patient and 

healthcare team. Heart monitors can detect heart rate variability and alert 

the healthcare professional in real time. The same concept is liberating 

for parents of children with type 1 diabetes using smart blood glucose 

monitors. Blood glucose measurements are sent directly to the cloud 

where parents can access their children’s blood glucose in near real 

time and be alerted to potential hypoglycemic events. Digital apps can 

be delivered to reverse type 2 diabetes, manage epilepsy, and improve 

quality of life.

Novel utilization of technology can be used to minimize the risk of 

health concerns and their subsequent healthcare costs. Elderly care 

can be delivered through digital apps. Risks such as falling, for instance, 

can be mitigated through fall detection and emergency assistance. 

Accelerometers found in phones or watches can be used to detect falls 

or seizures, triggering notifications to carers of an emergency, its details, 
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and location as they emerge. Future technology could also contain 

safety equipment. ActiveProtective, a company from the United States, 

provide a care belt that detects and deploys airbags if it detects a fall.[135] 

Technologies such as this can help save on avoidable elderly-care and fall-

rated healthcare costs.

However, the true value of the technology, especially connected 

wearables in elderly care, is realized in the machine learning and 

predictive analytics observed from the data collected. For instance, 

deviations from daily routines could indicate cause for concern and 

emerging physical or mental health concerns.

 Virtual Assistants
Virtual assistants are not just entertaining; they can accompany those who 

live alone and provide support to the aging and elderly. Virtual assistants 

can empower people by answering questions, teaching new skills, setting 

verbal reminders to perform tasks such as reminding to take a medication 

and even controlling the home by performing tasks such as picking up the 

telephone or making a call. As homes become more connected, virtual 

assistants will assist people in every aspect of life and interface with all 

aspects of the home. Virtual assistants could call the emergency services on 

behalf of a patient, citing exact details and location. Connected cameras can 

track movement to detect falling, triggering the virtual assistant to reach out 

for help. Not confined to the realms of speech, virtual assistants in the form 

of robots can assist in particular situations within elderly care, performing 

roles such as helping people get of bed, the bath, or into a wheelchair. AI 

within such virtual assistants could even learn patterns, for example, when 

people may want to visit the bathroom. Interaction through voice and 

touchscreen enables communication and will increasingly empower aging 

patients with greater autonomy and reduce the burden on elderly care.

As the capabilities of virtual assistants improve, so too will their ability 

to determine the emotions of their master, whether it be happy or sad, 
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excited or depressed. Virtual assistants will interpret the syntax, semantics, 

and tone of the conversation to check for signs of mental or emotional 

health concerns.

Similarly, there is an application for virtual assistants in products to 

assist people with disabilities. Apps can be used not only to control lights, 

music, and heating but also for lifestyle management. Nominet, a UK 

Internet organization, developed an open source prototype called PIPs to 

cater to people with sensory or cognitive impairments.[136] People are 

empowered with audio and visual prompts, nudges, and reminders to 

go through their daily routines and to develop the skills and confidence 

to navigate their environment. The prototype is built with a low energy 

Bluetooth controller that sends and receives notifications between devices. 

The devices can be used to guide people through tasks such as washing 

their face, taking a bath, or taking their medication.

 Remote Monitoring
Connected devices can provide support for caregivers and healthcare 

professionals to keep people out of a hospital and reduce their visits to the 

doctor. Apps and virtual assistants can provide medication reminders; fitness 

trackers will monitor user health and movement, alerting care providers if 

deviations in a routine were to occur. Connected devices can alert family and 

care providers of events such as using a fridge, having a bath, or opening the 

front door. Aspects of routine demonstrated in the data would be learned 

and respective accounts notified if there were to be a deviation from the 

norm. Emergency buttons can alert the relevant services, ensuring that the 

elderly or those with long-term conditions can receive medical intervention 

when required most. The combination of connected devices, apps, and 

virtual assistants make the home smarter and more conducive to mitigating 

risk, ensuring the healthcare provider/clinic is up-to-date with the latest 

overview of patient health while empowering the patient.
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 Medication Adherence
Forgetting to take medicine is easy enough, but the implications can be 

a problem. More than 50% of prescribed medications are not taken as 

directed.[137] Missed doses can result in slower recovery time, exasperate 

illness, or more serious consequences. A study by Benjamin et al. showed 

that getting patients to take their medications appropriately could prevent 

approximately 125,000 deaths per year in the United States alone.[138] 

There are many apps and digital services that remind patients when to 

take their medication, but medicine is going beyond even that. Smart 

pills with ingestible sensors seek to help doctors improve clinical health 

outcomes through notifying their respective app on confirmation that a 

medication has been consumed.[139] The notification is triggered when 

the sensor comes into contact with the stomach fluid. This enables doctors 

to measure treatment effectiveness and optimize the patient pathway.

 Accessible Diagnostic Tests
People with long-term conditions and the aging typically need increased 

diagnostic tests. Instead of turning up to a clinic or pharmacy to have 

urine and blood tests conducted, smart sensors in portable devices allow 

the test to be conducted in the comfort of the user’s home. Results can 

then be wirelessly shared to their healthcare team. Tests for cholesterol, 

cardiac function, HbA1c, fasting blood glucose, vitamin D levels, and 

insulin improve the convenience of performing repeated diagnostic tests, 

enabling quicker treatment, reduced risk of complications, and reduction 

in avoidable healthcare spending. As the database and evidence base 

expands, so too do the application of wearables in detecting signs of 

disease. Type 2 diabetes, for example, can be predicted from heart rate 

variability collected through an Apple Watch.[140]
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 Smart Implantables
Implantable devices that are connected to a smartphone, healthcare 

provider, and wider networks will be used to monitor and treat disease 

in real time. The possibilities from this data are huge, as wearables 

are external implantables that have the potential to collect metrics on 

biological markers from organs and tissue.

 Digital Health and Therapeutics
Telemedicine, which can be traced back to the 1900s, refers to the clinical 

application of technology that uses electronic technologies to support long-

distance patient care, patient and healthcare professional education, and 

health administration. Digital therapeutics, or digital health, is an enhanced 

form of telemedicine that brings together digital and genomic technologies 

with health, lifestyle, and human factors to deliver personalized medicine 

to patients, enhancing the efficiency of healthcare delivery.

There are more than 150,000 apps focused on health and wellness 

in the Apple App Store, which have been downloaded by over 50 million 

people.[141] Digital health tools allow patients to take a proactive approach 

to their health and wellness, looking to influence aspects of human 

behavior for the purposes of improving health. As more of our healthcare 

interventions are focused on chronic rather than acute diseases, behavioral 

therapy is surpassing pharmaceutical intervention as first-line therapy. 

Digital health and wider telemedicine have applications in a plethora of 

health conditions and are enabling healthcare and treatments to change 

rapidly. For instance, patients scheduled for bariatric surgery can be 

prescribed a digital health app to assist in weight loss in preparation for 

surgery; a patient diagnosed with asthma can be prescribed a connected 

asthma inhaler and app; patients diagnosed with epilepsy can be 

prescribed an app to manage seizures.[142] Consultations through Skype 
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of video-conferencing facilities, EHRs remote monitoring, digital health 

education, and transmission of scans or images among other applications, 

are all considered part of telemedicine.[143]

The world is truly mobile, and digital tools aim to deal primarily with 

minor primary care issues through electronic means. More serious issues 

would be escalated to the relevant healthcare professional, provider, 

or team. Digital health enables healthcare professionals to anticipate 

healthcare concerns rather than waiting for symptoms to present.

Measures of performance for digital health will be based on how 

convenient the experience was for the patient including patient health 

outcomes, quality of care, and the number of users using tools over the 

long-term.

 Education
Digital health provides a perfect opportunity for education. Less than 1 

in 10 patients with diabetes in the United Kingdom attends structured 

education within 12 months of diagnosis.[144] Research demonstrates 

offline education benefits typically decline 1 to 3 months after interventions 

cease, suggesting that learned behaviors change over time and further 

support is required to ensure lifestyle changes can be maintained. As a 

result, engagement with offline diabetes education courses is limited. 

Digital education is engaging by its very nature; it is available at any time 

and on any device at the patient’s convenience. Digital education can 

additionally be personalized to users through the data exchange between 

user and provider with the presentation, and analysis of real-time patient 

data subsequently encourages personalized, goal-focused practice and 

sustainable behavior change. Education can be made patient-centered and 

person-led rather than the traditional teacher–learner environment. Digital 

therapeutics provide a substantial opportunity to empower patients with 

the knowledge, skills, and resources required to manage and optimize their 

health.
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Lifestyle changes such as stopping smoking, moving more, and losing 

weight can all be tackled through behavioral interventions, simultaneously 

targeting the major chronic diseases. Chronic diseases and their 

management are behavior mediated. Digital health tools enable treatment 

to be personalized, democratized, and scaled. Real-world evidence has 

largely demonstrated the efficacy of digital tools. More evidence and 

randomized clinical trials are required to demonstrate causation. One area 

that is still unclear is who pays for digital therapeutics. If a doctor should 

prescribe a digital therapeutic, who should pay? The insurance company? 

The healthcare provider? The employer? The patient?

Regardless, digital innovation is revolutionizing disease management. 

Patients are increasingly demanding autonomy; wishing to be educated 

about their health, aware of the latest evidence base and engaged with 

their health.

 Incentivized Wellness
Ill health is expensive. To employers and the economy, physical and 

mental health issues cost the United Kingdom more than £77 billion.[145]  

Employees lose an average of 30 working days each year due to illness 

or underperformance as the result of poor health. The economic impact 

globally chronic conditions such as cancer, type 2 diabetes, and mental 

illness could reach over $47 trillion by 2030 according to the World 

Economic Forum.[146] Individual lifestyle choices, physical and mental 

health, all impact work performance. There is a significant challenge 

mounting for providers such as insurers and employers in improving 

absenteeism and presenteeism. To do this, providers are realizing the 

importance of holistic health—comprising physical health and mental 

health, social and human interaction, both in and out of the workplace.

As healthcare interventions focus on chronic conditions rather than 

acute illnesses, behavioral therapy is typically becoming first-line therapy 

over pharmacological intervention.
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Wellness programs provide a convenient mechanism by which 

employers can support health and wellness in the workplace. Previously, 

incentivized wellness meant encouraging individuals to visit the gym and 

take more steps—by taking the stairs or walking to work. Employers often 

promoted healthy behaviors associated with employee well-being and 

reduced healthcare costs. Today, wellness programs and digital tools go 

beyond signposting and screening. Immersive, engaging programs that are 

remotely accessed empower individuals to modify their behavior with the 

goal of achieving positive clinical outcomes, and better health. Behavior 

change in the form of therapy, behavior coaching, biomedical data 

feedback, and sensors enable wellness to be truly patient-centered.

 AI
AI has been widely adopted in critical industrial roles for decades 

and has finally started to take a leading role in healthcare. Connected 

medicine has provided fertile ground for machine learning models to 

be developed. AI seeks to place the doctor in our pocket. Among other 

things, AI has applications in disease prediction, cost reduction, efficiency 

improvements, automating manual tasks, and promoting us to alter our 

health. As data volume and variety increases, the capabilities of AI models 

will become more precise, more probing, and also more contentious. Life 

expectancy from birth has stopped increasing.

 Mining Records
Mining of healthcare information systems holds tremendous potential for 

medicine. Systems hold considerable information about patients and their 

health, prescriptions, doctor’s notes, and more. Healthcare data within 

such systems can be used to improve the quality of healthcare, reduce 

costs, mitigate mistakes, and improve and democratize healthcare quality. 
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However, knowledge discovery from the data contained in such systems 

is currently challenging due to variations in complexity, vocabulary, and 

standardization. Data mining provides an opportunity to extract relevant 

information from both textual and image-based archives. Mining also 

enables the discovery of patterns from data that can be used to build 

predictive models.

As discussed in Chapters 3 and 4, unsupervised learning is known 

for feature extraction, whereas supervised learning is suited to predictive 

modeling. Mining of records is beneficial for both the patient and provider. 

Mining of records can be used to identify high-risk patients or those 

with chronic conditions for whom a personalized intervention could be 

delivered. Record mining enables providers to find best practices and 

treatment to reduce claims and hospital admissions. Through comparison 

of symptoms, treatments, and positive and adverse effects, healthcare 

providers can analyze the pathways that improve outcomes for patient 

cohorts, enabling clinical best practice and standards of care.

 Conversational AI
Conversational AI refers to systems that can talk. Rather than a user 

interface based on text or code input, individuals can interact with 

conversational AI system with their voice. Users are increasingly using 

chatbots to communicate with products and services. Voice-driven AI 

such as Amazon’s Alexa can synthesize natural language to provide recipes 

or exercise tips, order products, or call a cab. The technology is catching 

on: 1 in 5 Americans owns a smart speaker, and there are over 100,000 

Facebook messenger chatbots.[147]

As AI chatbots develop, so too are their capabilities. Intelligent 

personal assistants will act as healthcare assistants. By virtue of being 

voice-controlled, there are immediate applications for those less-abled, 

where only the voice needs to be used to perform tasks or instructions. 

Within health, conversational AI enables simple questions that do not 
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need the attention of a doctor to be answered. For instance, new parents 

could bombard a conversational AI with questions without fear of 

embarrassment or consuming healthcare professional’s time. Questions 

such as what temperature a baby should bathe in, how often a baby should 

sleep, or whether there are developmental milestones taking place can all 

be instantly answered by an AI speaker. Many individuals turn to search 

engines to find the answers to their questions. However, most patients who 

query symptoms are unaware how to discern research quality and may 

come across conflicting evidence in addition to misleading information 

(or fake news) that can leave patients confused. With the assistance of a 

medical AI chatbot, patients can receive immediate assistance. Continuing 

the preceding example, if a child’s new parents had a medical question 

or were concerned by a symptom (say, a chesty cough), it would be 

burdensome for them to visit the doctor for a response to every question. 

However, there is a need for medical confirmation. This cannot currently 

be detected through algorithmic means; and hence, the evolution of 

conversational AI in healthcare will be digital health assistants supported 

by and learning from healthcare teams and the world around them.

As conversational AI develops, cognitive systems will analyze 

conversation to detect early signs of mental, physical, or neurological 

illness. Voice-enabled devices such as Alexa will one day be able to identify 

symptoms of Asperger’s, anxiety, psychosis, schizophrenia, and depression 

from conversational tones. This will assist doctors to predict better and 

monitor and track disease.

Imagine how much time and resources will be saved when virtual 

assistants, healthcare chatbots, and digital tools give answers to basic medical 

questions that do not require the intervention of a medical professional.

 Making Better Doctors
AI will transform what it means to be a doctor. AI’s integration into 

medicine is making better doctors and saving lives. From waiting times 

to prioritization, finding of evidence to maintaining productivity, 
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or supporting decisions—AI will assist doctors and healthcare 

professionals in making informed decisions.

 Optimization

Suboptimal processes waste time and resources. Scheduling systems 

for clinics, doctors, and patients enable healthcare to be as efficient as 

possible. An AI system that was to schedule patient appointments and 

streamline communication would lighten doctor burden and focus time 

on more pressing matters. If a patient presented an urgent matter, for 

instance, an AI could evaluate and prioritize patient appointments.

AI will enable healthcare professionals to stay up to date with the 

latest evidence base. PubMed, for instance, has over 23 million papers 

within its archives.[148] AI that was to mine such articles and present 

the most relevant evidence would facilitate more up-to-date healthcare 

professionals and enable professionals to practice medicine to the best 

of their knowledge and evidence base. Similarly, AI can assist healthcare 

professionals in administrative tasks, performing roles of cognitive 

assistance.

AI can help mitigate a plethora of mistakes, including those made by 

humans. Record mining, in particular, will enable doctors to improve over 

time. For instance, digitalized data regarding patients, their treatment, 

healthcare professionals, and clinics can be mined to identify errors in 

treating certain conditions and avoid unnecessary hospital admissions. 

Zorgprisma Publiek, a Dutch organization, currently does precisely this: 

using IBM Watson to mine data to identify repetitive mistakes.[149]

 Diagnosing disease

Professor Geoffrey Hinton, a pioneer of neural networks, famously stated 

that it is “quite obvious that we should stop training radiologists” due 

to the sophistication of image perception algorithms, which could soon 
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be more advanced than humans. AI can currently be used to examine 

medical scans, identify symptoms of type 2 diabetes, identify retinopathy 

and cardiovascular disease risk, and spot signs of breast cancer. AI will 

perform better as algorithms are trained on more data. However, it is not 

just clinical data that is required for disease diagnosis. Cardiogram, an 

organization based in the United States, can detect type 2 diabetes with 

an 85% accuracy rate—from Apple or Android watches, Fitbits, and other 

heart-rate enabled wearables.[150] Similarly, the US company Striiv can 

detect atrial fibrillation from 2 weeks’ worth of heart-rate data. Algorithms 

to detect disease are showing great promise, with several already in 

medical practice. However, that does not mean all AI diagnostics are ready 

for implementation. Many AI tools are developed without peer review 

and its academic rigor. Essential details require verification, such as the 

algorithm’s code, training, and validation datasets; the data to which it is 

compared; how performance is evaluated; and how neural networks come 

to their conclusions. As AI evolves, one would expect AI diagnostic tools to 

undergo the same RCT analysis that drugs are subject to. Diagnostic AI can 

save lives, money, and time through earlier diagnosis of conditions and 

responsive treatment.

 Making and rationalizing decisions

Doctors make challenging decisions daily. It is vital that these decisions 

are as informed as possible. The use of AI, data mining, and predictive 

analytics is enabling clinicians to rationalize decisions and develop 

evidence-based treatment options. AI does not have to make the decision 

but can present the most reasonable opportunities to proceed.

 Drug discovery

Developing a new drug is an expensive business, and only one in three 

new drugs will make it to the market. Every new drug brought to the 

market costs pharma an average of $2.7 billion.[151] The consequence of 
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failed drug trials can be damaging: from reduced share price to closure 

of worksites and reduced staffing. Hence, the pharmaceutical and life 

science industry is increasingly turning to AI to facilitate drug research 

and development. Pharma isn’t looking to replace humans. Instead, it is 

looking to see why the rate of failure is so high through using innovative 

AI. AI systems are being developed that can identify new therapies from 

information on existing medications; this could improve efficiency, drug 

development success, and accelerate the route to market for new drugs. In 

cases of pandemics, such as Ebola or Swine Flu, an accelerated route could 

save numerous lives.

There are approximately 1060 compounds that have drug-like 

characteristics.[152] The chemist of the future will be empowered through 

leveraging data: historical data, experimental data, inferences, and trends. 

AI enables the earlier identification of promising drugs and biomarkers. 

AI also has application in clinical trials. Clinical trial patient stratification 

allows the identification of patient groups most likely to benefit from the 

associated drug. This enables clinical trials operators to find the right 

patients for trials rather than patients who are unlikely to respond.

 3-D printing

Innovation in 3-D printing promises exciting advances in the field 

of healthcare, where 3-D printing is beginning to disrupt traditional 

paradigms as the technology becomes more affordable and accessible. As 

the name suggests, 3-D printing involves printing 3-dimensional objects 

from a digital model, using additive processes to build the object. Also 

known as additive manufacturing, 3-D printing adds iterative layers, one 

on top of the other, to assemble the model. This allows precise modeling 

and reduces error. Although 3-D printing solutions are still in infancy 

compared to other technologies, the potential for its applications is 

exciting. Many AI experts consider it feasible that in the future, humans 

will adopt robotics and bioprinted material into their bodies. Soon humans 
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may be able to print just about everything, from prosthetics and pills to 

bioengineered replacement body parts and organs. The technological 

advance of 3-D printing has life-changing implications for patients.

 Personalized prosthetics

The World Health Organization state that approximately 30 million people 

require prosthetic limbs, braces, or mobility tools and only 20% have 

them.[153] 3-D printing enables prosthetics to be custom built for each 

person. Through capturing a patient’s measurements, prosthetics can be 

tailored to ensure comfortable, custom-fitted devices. Prosthetics will also 

become more comfortable as multi-material, 3-D printing assists with 

ensuring a better integration with the human body. Casts could also be 

made more comfortable through the same, personalized approach. 3-D 

printing facilitates the swift and cost-efficient creation of personalized 

products. Innovation in 3-D printing is combining integrated sensors and 

machine learning algorithms to support more natural, fluid movements. 

Predictive movement algorithms will evolve to mimic more natural 

movement, and humans will be able to use their brain and body to control 

them. 3-D printing technology enables prosthetics to be modeled and 

constructed in a little under 24 hours; importantly, printed prosthetics 

cost a fraction of conventional prosthetics.

 Bioprinting and tissue engineering

Kidney, liver, and heart transplants could soon be a thing of the past. 3-D 

bioprinting marks the beginning of an era where transplant lists are a thing 

of the past. 3-D-printed organs can be built using the same techniques as 

3-D printing, but instead use stem cells as the printing material. As well 

as printing cells, bioprinters typically output a gel to protect cells during 

printing. In the future, once these organoids are printed, they will be able 

to grow inside the bodies of patients. Princeton University has developed a 

bionic ear from 3-D printing tools, which can hear frequencies beyond the 
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human range. Printable and customizable implants from a patient’s cells 

reduce the potential risk of rejection from the body.

One use case for bioprinting is the 3-D printing of human skin. Burn 

and acid victims, for example, have limited options for their disfigured 

skin. A team of Spanish researchers developed a 3D bioprinter that was 

able to produce human skin cells. Within 30 minutes, a biological ink 

containing human plasma and other materials was able to print 100 square 

centimeters of human skin.[154] The opportunities bioprinting technology 

enables are truly life-changing.

There is no doubt a cosmetic market for bioprinting. It is feasible that 

in the future, face printers could be used by people to apply a model of 

someone else’s face to themselves, or even store a digital model of their 

face and regularly reprint their face for perpetual youth.

Alongside nanotechnology and genetic engineering, bioprinting may 

prove a tool in the pursuit of extending life spans.

 Pharmacology and devices

3-D printing disrupts traditional pharmacology and device manufacturer 

approaches. For instance, the efficacy of drugs and other treatments can 

be tested on replicated human cell tissue. Through this, 3-D printing 

enables the printing of medications that are personalized for the patient. 

By reducing drug variability with this approach, there is potential for 3-D 

printed drugs to increase medication efficacy, reduce adverse effects, and 

improve adherence. The same concept applies to device consumables. 

Blood glucose test strips, for instance, could be 3-D printed for use by 

diabetic patients at home. The possibilities are endless.

 Education

Alder Hey Children’s Hospital in Liverpool, England, uses 3-D printing 

for teaching and familiarizing stakeholders with heart surgeries that are 

to be performed.[155] Every cardiology patient is unique; and for those 
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undergoing operations, 3-D models are printed to enable a variety of uses. 

Firstly, it enables surgeons to demonstrate surgeries that will be performed 

to often anxious and concerned parents using textures and colors that 

closely represent human tissues. Secondly, the 3-D models are used by staff 

and surgeons to familiarize themselves with the most important part of an 

operation—the child’s heart. Finally, 3-D models are used to train students.

3-D printing also enables surgeons to prepare before surgery through 

evaluating a precise model of the patient’s body or organs. This mitigates 

the likelihood of errors, improves surgeon accuracy, and reduces the 

amount of time the patient is required to be on the operating table. 3-D 

modeling is also useful in modeling bodily organs without the need for 

invasive procedures.

 Gene therapy

Just like organ transplant lists, genetic diseases could soon be a thing 

of the past. The use of nanotechnology, which refers to working with 

tiny particles to manipulate cells and alter DNA, enables the editing of 

gene expression at a cellular level. For instance, gene editing has been 

successfully used to modify human immune cells to resist HIV infection. 

With 1 in 25 children born with a genetic condition, gene editing has the 

potential to treat or eliminate disease.[156] It could be used to correct 

defective genes in embryos and personalize the child’s immediate 

healthcare treatment plan. It is feasible that genetic conditions like cystic 

fibrosis, sickle cell anemia, and muscular dystrophy could be treated 

through editing the DNA in patient cells. Gene editing is not without 

ethical implications: many people have moral and religious concerns 

about the use of human embryos for research or the editing of genes. 

Also, there is a concern that nanotechnology and gene editing will only be 

available to those that are wealthy, which will exasperate the disparity in 

healthcare and interventions. Nanotechnology will significantly improve 

treatment and recovery time, with the absolute potential to prevent 

humans from developing disease at all.
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 Virtual and Augmented Reality
In the not too distance future, surgeons performing CT scans will be able 

to layer their scans over a patient’s body via augmented reality; medical 

students will use virtual reality to explore the inside of the heart and burn 

victims will be virtually transported to a snow-covered mountaintop 

as a form of pain relief therapy. Immersion into a completely digital 

environment, virtual reality, has mainly been used for games. Innovation 

in augmented and merged reality means that we can now entwine 

the virtual and physical worlds and manipulate both environments 

simultaneously. Virtual, augmented, and mixed realities are increasingly 

being implemented in a wide range of medical applications. It is already 

evident that as it is incorporated further into healthcare, it has the 

potential to change the way many healthcare services are delivered.

 Virtual Reality
Virtual reality (VR) is typically associated with gaming. In virtual reality, 

the user’s reality is replaced by an immersive, entirely digital environment. 

This is currently achieved through a headset and handheld sensors, which 

enable interactions within the environment.

 Augmented Reality
Augmented reality (AR) overlays a digital or 3-D environment in the form 

of objects, video, or data into the user’s environment. The user’s real-world 

experience remains central to the user’s experience, and the information 

is added to the user’s existing reality to enhance their experience. 

Information is distinctly digital and does not seek to emulate real-world 

objects. AR does not necessarily require additional hardware and can be 
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achieved through technology such as the mobile phone. AR’s popularity 

was confirmed by the Pokemon Go app phenomenon in 2016. The game, 

downloaded more than 800 million times, overlaid 3-D characters within 

the user’s real-world environment through the user’s GPS location and 

inspired a wave of AR innovation.

 Merged Reality
Merged reality seeks to emulate digital objects that can be interacted with. 

This requires additional technology such as a headset. Separate sensors 

track hand gestures and movement. In a mixed reality, the user can 

manipulate both the real-world and digital environment.

 Pain Management
Research demonstrates that virtual reality environments can be used to 

reduce the amount of pain a human feels versus a control distraction 

condition.[157] The somatosensory cortex and insula, found in the brain, 

are linked to pain. Hence, through immersing patients in a virtual reality, VR 

will be used to enable patients to endure painful surgery. Amputees often 

report pain in their amputated, missing limbs. VR environments can be 

used to immerse the patient within an environment to better cope with their 

phantom pains.[158] VR also works as a distraction. In the future, children 

and adults alike will be given a VR headset from their doctor when receiving 

an injection to distract them from the impending prick. Hermes Pardini 

Laboratories and Vaccination Centres piloted the use of a VR headset 

that immerses the patient into a fictional, gamified environment.[159] 

The patient is distracted in a virtual world to the point that they are often 

unaware they have received their injection.
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 Physical Therapy
VR can track human movement, allowing patient movements to be 

monitored and analyzed. VR gyms have been opened in San Francisco 

and Ohio.[160] Rehabilitation will become gamified, for instance, through 

kicking a virtual ball or catching a ball. Recovery exercises can be delivered 

and tracked in a VR environment and retold to the patients if they were not 

to get it right.

 Cognitive Rehabilitation
The application of VR and AR in fears and phobias is apparent. Performed 

as a medical treatment, patients can be gradually exposed, known as 

graded-exposure therapy. Data from sensors will be assessed to ensure 

patient safety and develop best practice.

Cognitive function can be improved for patients struggling to perform 

everyday tasks. For instance, through monitoring the performing of 

patient tasks in a VR environment, a doctor could determine declining 

memory loss and identify areas of concern or priority. Similarly, patients 

with injuries to the brain or those that struggle with tasks can have digital 

environments created to represent real-life scenarios. Patients can practice 

tasks and regain or develop cognitive function. Patient engagement can be 

monitored and analyzed to observe areas of difficulty or reduced attention. 

There are few randomized controlled trials that have been conducted 

into VR in cognitive rehabilitation. However, some applications of VR are 

effective in treating cognitive deficits in people with neurological diagnoses.

 Nursing and Delivery of Medicine
VR and AR will develop to become part of standard medical training. 

Both types of reality can be used to improve outcomes by enriching 

the information available to the individual. For instance, Alder Leys 
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Children’s Hospital in England uses a VR headset and 360-degree video 

to train student doctors how to deal with stressful situations. Critical 

decision points can be reviewed and analyzed with peers and staff. Virtual 

reality will be used more to learn medical specialties such as performing 

operations and anatomy. Operations can be practiced with an expert 

monitoring and giving feedback in real time. The Royal London Hospital 

conducted the world’s first VR surgery in 2016,[161] enabling viewers to 

watch in 3-D 360. The learning experience is unparalleled and has the 

potential to disrupt medical training, particularly for countries that have 

limited healthcare resources. In the future, doctors will use augmented 

and mixed reality to enrich their environment. Surgeons will have access 

to critical information in real time through mixed realities, delivered to 

their vision through glasses. Nurses, for instance, could use augmented 

or mixed reality to identify veins in the arm for a blood test. The 

Interventional Cardiology Center at Tufts Medical Center in Boston uses 

VR to introduce the facility to prospective patients with anxiety before a 

procedure.[162]

 Virtual Appointments and Classrooms
As the cost for virtual and merged reality devices becomes more 

affordable, virtual appointments will become commonplace. Virtual 

appointments remove the inconvenience of attending a clinic, saving time, 

environmental resources and focusing healthcare professional time to 

where required. Virtual appointments will become as familiar as webinars, 

enabling stakeholders to be present without traveling. As well as one-to- 

one appointments, virtual and merged realities provide an immersive 

and engaging experience suited for learning. Virtual reality will become a 

staple tool for education and training—for both healthcare professionals 

and patients alike.
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 Blockchain
Transitioning of traditional patient health records to the EHR is 

considered to be enormous progress for healthcare. The digitalization 

of patient records mitigates some of the traditional risks of centralized 

data stores. However, this model still places the medical records in the 

hands of the provider. Blockchain technology, popularized by the bitcoin 

cryptocurrency, has the potential to revolutionize data access, privacy, 

and trust. Currently, blockchain is yet to be deployed for mainstream 

healthcare.

Blockchain, fundamentally a collection of data records, is a piece of 

software formed by the combination of several preexisting technologies 

that provide blockchain with its characteristic features: an immutable, 

distributed public ledger whose authenticity can be verified by anyone: 

those who validate the data on the ledger are rewarded with value, 

which helps create trust in a trustless environment; distributed peer-to- 

peer control, which provides a high level of security; and the ledger can 

be programmed to trigger automatic transactions in the form of smart 

contracts, allowing for a widespread application of this technology.

PayPal, Visa, and Mastercard, for instance, act as central authorities 

for financial transactions: trusted institutions that act as intermediaries. 

The land registry acts as the trusted store for details on homeownership. 

These centralized databases are subject to being hacked or manipulated. 

Blockchain technology aims to solve data management, privacy, and 

security issues, improving interoperability and easing the flow of data 

between doctors, hospitals, healthcare systems, and insurance providers 

through the use of a decentralized, immutable database. Patients are 

demanding increased access to their medical health records, with iOS 11.3 

even including an EHR feature.[163] Data from EHRs IoT, wearables, and 

devices can be used within the ledger, in a trusted, secure, transparent, and 

interoperable environment.
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The blockchain is an immutable database that is stored and 

maintained by all those using it. Each new transaction or piece of data is 

encrypted and then approved by a particular proof-of protocol (consensus, 

work, stake) by other nodes on the networks that authenticate the 

transaction or verify the stored piece of data.

Each node on the network has an identical copy of the blockchain; 

and thus, the transaction is permanently recorded and linked to previous 

records. The links, known as hashes, are traceable back to the very first 

block in the blockchain. Therefore, any attempts to tamper with a block in 

the present would require the transaction and all related blocks to be also 

altered, on all records, distributed among the nodes holding a copy of the 

ledger simultaneously. The longest chain of events is considered valid. 

Blockchain implements crypto-economic and game-theory techniques. 

Any attempt to create a rival chain would need to be created faster than the 

current version of the truth to be accepted. This would require tremendous 

computing, energy, and resource commitments. Miners compete to 

validate blocks. This good behavior is expensive regarding electricity 

and computing power, and so miners are incentivized to validate blocks, 

rewarded with bitcoin (BTC; in the BTC scenario). Through creating a 

common, distributed, immutable database of healthcare information, 

doctors and healthcare providers have the potential to access medical data 

from any system, with improved security and privacy, less administration, 

and better sharing of results.

• Single points of failure are eliminated by decentralizing 

and encrypting the data.

• The blockchain is democratized. Anyone can 

contribute or store a version of the truth.

• Through ensuring consensus on events, the most likely 

version of the truth is held.

Chapter 7  Future oF healthCare



296

• A transparent and auditable ledger of events is 

provided through time-stamping.

• Game theory, crypto-economics, and hashing 

incentivize good behavior and ensure the events are 

without censorship.

Blockchain technology has many applications in healthcare, with most 

technology currently in pilot or proof of concept stage.

 Verifying the Supply Chain
The first application of blockchain is verifying the supply chain. As the 

blockchain is created in a chronological and auditable manner, it can act 

as a means of verification for components of every link in the supply chain. 

The journey of materials or treatments, for instance, can be logged onto 

a blockchain ledger, which could be used to identify fraudulent activity, 

anomalies, error, or a break in the chain through data entry or IoT devices. 

For instance, the cold-delivery chain of delivering insulin from manufacturer 

to pharmacy could be confirmed to be untampered and appropriately 

cooled. This is currently being used in developing countries to combat 

counterfeit medication. It is also being developed to enhance genomic data 

protection, addressing the privacy challenges of big genomic data.

 Incentivized Wellness
Blockchain technology could be used to incentivize wellness: through 

the use of a cryptocurrency as a digital token of value. Engaging people 

with health services or a healthier lifestyle could save the global economy 

a tremendous amount of money in healthcare costs. Health providers or 

employers typically see the cost benefit of this in the form of savings or profit, 

and this is rarely passed to the individual. By utilizing blockchain technology, 
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tokens could be created and distributed to patients through the blockchain to 

share the value of the savings and be treated as a tradable currency.

Individuals could earn tokens through behaviors such as going to the 

gym, reaching their step goal, attending education sessions, engaging 

in mindfulness, completing a particular sports event, or adhering to 

medication or digital therapeutics. The ecosystem rewards positive 

behaviors with an asset, or token of value. The value of the token could be 

fixed. Extending this concept, positive health behaviors could be extended 

to the point where patients have health token savings accounts that could 

be used to transact in hospitals.

 Patient Record Access
Patients are demanding access to their health record. This poses a 

significant challenge as to how to best share sensitive medical data with 

unknown third parties. For third parties, there is also a challenge to verify 

the integrity of the data while ensuring privacy for the patient. Presenting 

patient records on an appropriately permitted blockchain would give 

cryptographic assurance on data quality without any need for human 

involvement. Providers or consumers uploading health data would 

generate transactions. Users provide a signature and timestamp, alongside 

a private key to access data. By using digital signatures, all records stored 

on the blockchain can be identified and used to create a comprehensive 

patient health record. The use of digital signatures and cryptographic 

encryption ensures data travel securely and are accessible only by those 

with the relevant public keys. By using blockchain technology, each 

addition to the EHR can be logged, with an immutable, auditable trail 

of transactions, while ensuring the most current version of the record is 

used. Patients would be able to verify all attempts to access or process 

data. Blockchain’s decentralized structure enables any approved 

stakeholder to join the ecosystem, without the need for data integration 

or manipulation concerns.
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 Robots
The use of robotics is changing healthcare, although it will be some time 

before robotic technology will be widely affordable or implemented.

Indeed, it is also unlikely robots will entirely replace humans in the 

medical setting. Currently, hospitals and healthcare systems are unable to 

meet the cost of the technology; and robotic assistants have not, and some 

would say cannot, replace human contact. Over and above its use in the 

supply chain, robot technologies have potential in the following areas.

 Robot-Assisted Surgery
Robot-assisted surgery enables enhanced vision, improved precision, 

and dexterity. Currently limited in reach, robot-assisted surgery will 

become commonplace as barriers to entry such as the cost of hardware 

and training are reduced. In the future, healthcare professionals may have 

to learn how to use an instrument as well as how to perform the surgery. 

Robotic-assisted surgery blurs the lines of liability, which could prove to be 

a barrier to adoption.

 Exoskeletons
Robotic exoskeleton technology focuses on enabling patients to perform 

tasks through the use of an external, integrated device. Ekso Bionics is an 

organization that provides a wearable exoskeleton that assists spinal cord 

injury patients to stand and learn to walk. In the future, exoskeletons will 

become a standard form of rehabilitation and aid human mobility in more 

activities, and in more environments.
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 Inpatient Care
Inpatient care can be enhanced through the use of robots for streamlining 

tasks. Robots could be used to automate tasks such as collecting mail or 

delivering blood. Delivery robots will deliver medications or important 

material autonomously. Robots are already being used to disinfect rooms, 

where the risk to humans is minimized through using a robotic agent.[164] 

Soon, ingestible agents and smart pills will be able to monitor a patient’s 

internal reaction to treatment; robotic nurses will become commonplace 

for automatable tasks, such as taking blood. A robot will take your vitals 

and draw blood by identifying the correct vein with greater accuracy than a 

human nurse. Robots will be used to support care for the elderly and those 

with long-term conditions.

 Companions
Virtual assistants are becoming more human-like with developments in 

natural language processing. As discussed previously, humans are already 

forming bonds with robots. Robots can be used to provide companionship 

or treat loneliness in cases of mental health, elderly, and long-term care. As 

robots evolve in their capabilities, robots will be able to perform increasing 

healthcare duties such as bathing patients, transporting patients, and so 

on. Robots will be able to monitor vital signs through IoT and wearables 

and aid the patient in real time.

 Drones
Drones have the potential to alter the way medicine is delivered. Drones 

can be used in hard-to-reach areas, places of conflict, and remote 

populations to deliver medication, vaccinations, and diagnostics. Drones 

will be used to deliver medications from the pharmacy, just as they are 

being used in shopping. Time-sensitive items such as blood, bodily fluids, 
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and organs can travel shorter distances to go directly to where they need 

to be, within campuses or across larger distances. Drones can also be used 

to locate and identify, particularly in remote locations. One use case for 

drones is as a flying medication toolbox in cases of emergency. Critical 

care in the minutes after a stroke, trauma, or heart failure is essential to 

accelerate recovery and prevent death. An ambulance drone prototype, 

developed by Tu Delft, combined a heart defibrillator, medication, and 

two-way radio that could be dispatched to a patient to speed up the 

response before the first responder.[165]

Current restrictions in the use of drones are reducing their potential. 

It may be some time before flight restrictions, legislation, and functional 

issues such as drone battery life and drone load are resolved.

 Smart Places
Intelligent homes, hospitals, places, and things promise to change the 

way we live. Ubiquitous connectivity and an expanding sensor base 

provide a wealth of opportunity to people, patients, and providers alike. 

Improvements in patient lifestyle and healthcare have contributed to 

growing numbers of centenarians over the past 30 years. In the United 

Kingdom alone, the number of people living to 100 increased by 65%.[166]  

These breakthroughs have come at a cost to healthcare; and smart places, 

and smart things, enable scalable opportunities to improve health and 

social care—reducing costs per capita while personalizing the experience 

to the patient. Rather than going through the process of connecting 

and integrating apps, sensors, or devices, connected places will use 

automated sensors that do not require the user’s constant attention, 

collecting tremendous amounts of real-time data. Facial recognition, voice 

recognition, responsive notifications, and data-based suggestions will 

become the norm. Aggregation and analytics platforms will streamline and 

simplify decision-making processes in a rapidly changing environment. 
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These devices can notify patients and healthcare professionals in real time: 

forget your Big Brother, this is Big Doctor.

 Smart Homes
There will be many ways that homes will become smart in the pursuit of 

improved patient and population health, which are best illustrated by 

example. On waking, a wearable sleep monitor will assess the quality of 

your sleep while you perform mindfulness through your connected watch. 

Your sleep monitor will even tell you when to go to bed for optimum 

recovery. After brushing your teeth with a toothbrush that assesses 

whether you are hydrated or not, you drink your morning coffee, which 

controls the dosage of insulin released for absorption in your bloodstream. 

Your fridge will inform you of out-of-date food and ensure none of your 

potential allergens are found in the food you purchase. Smartphone apps 

will augment the calories, and nutritional values of foods; and 3-D printers 

will enable the printing of safe-to-dispense, at-home pharmaceuticals. 

Virtual assistants and even mirrors will assess for signs of anxiety and 

depression and assess health biomarkers in natural language. Should you 

develop a cough, your virtual assistant will tell you that you’re coughing 

more than usual; and with the change in body temperature detected 

from your smartwatch, your assistant calls the doctor on your behalf and 

arranges an appointment. As a closed environment, the smart home allows 

for AI to accommodate for the highly individualized needs of the user. 

The most important element aspect of smart anything is the nuance when 

scaling: to understand the context and prioritize local activity.

The future is not as far as it seems. Bolzano in Italy is already working 

with IBM and various partners to empower aging people to age safely at 

home.[167] Safety and security are the main priorities, with the project 

using sensors installed into homes to monitor environmental factors such as 

temperature, carbon monoxide, and water leaks. Data is pushed to an off-site 
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control room where, depending on the individual need, family members, 

volunteers, emergency response staff, and social services are notified.

 Smart Hospitals
A smart hospital is one that is connected, much like the smart home. The 

objective of a smart hospital is to provide clinical excellence, an efficient 

supply chain, and superb patient experience—facilitated with technology. 

Smart hospitals will use a continuous learning ecosystem, ranging across 

many areas including electronic data collection and health records, 

digital technology, robotics, 3-D printing, unstructured data, and robust 

analytics. Somewhat ironically, mass use of technology and AI will enable 

patients to become more actively involved in their treatment decisions. 

Non-emergency consultations will take place on the Internet, with AI 

prioritization enabling the right doctor, with the right skills and training, to 

treat the patient. Treatment will be blended between offline, physical care 

and digital care—where adherence and accountability can be quantified 

and maintained. Growing data and large-scale analytics will continue to 

personalize digital treatments for patients.

On attending a hospital, an automated and streamlined admission 

reduces patient waiting time. On admission, patients will be tagged with 

a clinical-grade wearable to track vital signs through the inpatient stay. 

Metrics are all sent wirelessly to a dashboard visible to your medical 

team. Any anomalies or causes for concern are detected and prioritized. 

Hospitals and surgeries will become hubs of data, with hospitals working 

with business to extract value from the data—regarding improving 

efficiency, minimizing mistakes, and for improving treatment and 

device decisions. Healthcare will be delivered as a service, with patients 

incentivized with cryptocurrency to maintain sensible and healthy lifestyle 

choices. All relevant data will be anonymized and accessible to digital 

health partners and internal departments to enable continuous learning 

from each patient’s experience.
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 Reductionism
The basic premise of reductionism is that by breaking down or simplifying 

complex biological or medical phenomena into their many parts, one 

is much more likely to understand a single cause and devise a cure. 

Reasoning is reductionist. For instance, a mouse can be divided into 

a skeleton, a circulatory system, a nervous system, a digestive system, 

and so on. It fits a model—a pattern, theory, equation, formula, or some 

form of common structure. AI systems also follow the same, reductionist 

approach; reducing the problem to a defined discipline. For AI to truly 

develop artificial understanding, the key will be to address humans from a 

perspective of holism.

As the world continues to immerse itself in digital technology, 

healthcare AI models are becoming quicker and more accurate, with 

patient-based care and lifestyle medicine placing the focus back on 

holistic health. The effect of lifestyle factors, sleep, movement, nutrition, 

environment, and genetics on health is well known. And we know that 

the world and people, mind and language, can be unpredictable. As AI 

develops, problems of irreducible complexity will require solving where 

the reductionist approach cannot work. The focus is on value, on the 

patient; treating patients as people and focusing on the patient’s wider 

health, relationships, and goals. As AI grows, so too does the requirement 

to not lose the human touch.

 Innovation vs. Deliberation
While AI and digital health hold significant promise, healthcare is facing 

significant challenges in coping with the rapid drive to integrate these 

systems into medicine—where the stakes are high. Meaningful changes in 

healthcare will come from the right blend of innovation and deliberation. 

As the boundaries of discovery are tested, the potential of providing more 
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patients personalized and precise care is realized. At the same time, there 

is an obligation to explore and anticipate the social, economic, political, 

and ethical consequences of innovation.

AI’s adoption in healthcare is best managed as a gradual development, 

which would be useful for stakeholders to have time to map and 

understand the possible consequences of its implementation. Robust 

standards are required for auditing and understanding AI models to 

uphold quality assurance and trust. Academic research, clinical evidence, 

and policymaking are also required on the use of AI systems in healthcare. 

The development of AI standards requires a diverse and public forum that 

is academically robust and reviewed periodically in line with the latest 

evidence base.

Awareness within the medical professional and patient communities 

is required. Healthcare professionals need basic knowledge of how AI 

applications function in their respective medical settings to understand 

the advantages, disadvantages, and consequences of how AI can facilitate 

and assist them in their everyday tasks. Patients must become accustomed 

to engaging with AI systems and explore the benefits for themselves. 

Demonstratable examples of how AI in healthcare is optimizing efficiency, 

optimizing resources, and improving population health outcomes will 

strengthen the public perception of AI.

Organizations working with AI need to communicate and engage the 

general public about the potential advantages and risks of using AI in 

medicine. Organizations developing AI must work with academia to take 

the necessary steps to be able to measure the success and the effectiveness 

of AI systems independently. It is vitally important to encourage affordable 

AI solutions to democratize AI as the stethoscope of the twenty-first 

century; and published, validated evidence and literature is essential to 

trust and adoption. Here’s to the most hopeful era for healthcare yet.
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CHAPTER 8

Case Studies
AI is improving the healthcare experience, bringing success to 

those who can leverage and adapt to a new health and care delivery 

paradigm. The proceeding case studies provide unique and engaging 

perspectives of the use of big data, AI, and machine learning within 

healthcare. Real-life descriptions of organizational approaches to  

data-identified healthcare problems demonstrates the instant value 

within available data.

Several enthusiastic and responsive healthcare organizations 

submitted a case study for inclusion within the book. The focus of case 

studies was real-world demonstrations of AI, machine learning, data, and 

IoT usage that were novel and innovative in their provision. As well as 

describing what success looked like, and how it was achieved, the aim was 

to bring light to the inertias and developed learnings encapsulated within 

systems.

 Case Study Selection
A call for case studies was placed on Twitter and we received over 60 case 

study applicants. Case studies were only accepted on the proviso that the 

application was deployed in some guise, whether pilot or otherwise, and 

case studies were supported with evidence to demonstrate value from a 
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financial and/or patient perspective. The criteria used to evaluate case 

studies was the following:

• Focus on delivering precision medicine

• The case study focused on a machine learning or data- 

driven model that was in existence, in production, and 

deployed

• Case studies focused on learnings from the projects

• Case studies required authors to share adequate 

information on the project scope and conclude on the 

organizational, business, clinical, or financial impact

The case studies chosen for inclusion have been validated and contain 

applications that exist in healthcare today. Case studies comprise the 

following:

• AI for Imaging of Diabetic Foot Concerns and 

Prioritization of Referral for Improvements in Morbidity 

and Mortality—Harkrishan Singh, Gro Health

• Outcomes of a Digitally Delivered, Low-Carbohydrate, 

Type 2 Diabetes Self-Management Program: 1-Year 

Results of a Single-Arm Longitudinal Study—Laura 

Saslow, Jim Aikens, and David Unwin

• Delivering a Scalable and Engaging Digital Therapy for 

Epilepsy—Charlotte Summers, Diabetes Digital Media

• Improving Learning Outcomes for Junior Doctors 

Through the Novel Use of Augmented and Virtual 

Reality—Alder Ley Children’s Hospital

• Big Data, Big Impact, Big Ethics: Diagnosing Patient 

Risk from Data—Dom Otero, Diabetes.co.uk
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 Conclusion
Case studies contained within this chapter showcase the potential of data- 

driven systems, AI, and machine learning in healthcare. The case studies 

selected showcase a tremendous vision, focus, and drive to improve 

patient engagement, outcomes, and clinical success. Showcased case 

studies serve as stimulating examples on the topics of the following:

• The use of data to drive decision-making and provide 

patient- and population-scale precision medicine

• Advantages and pitfalls of developing machine learning 

models

• Data collection, analysis, and governance

• Developing intelligent agents and the blend between 

digital and offline healthcare

• Ethics of AI and morality

• The future of healthcare and digital technology

 Case Study: AI for Imaging of Diabetic Foot 
Concerns and Prioritization of Referral 
for Improvements in Morbidity and Mortality
Harkrishan Singh, Head of Machine Learning, Gro Health, United Kingdom

 Background
Over 400 million people globally have diabetes, a condition of high blood 

sugar (glucose) call hyperglycemia. The two main types of diabetes 

are type 1 and type 2. Chronic hyperglycemia can cause recognized 

complications of diabetes including foot problems. Due to prolonged 
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high blood glucose levels, people with diabetes may have slower wound 

healing times. They may also have reduced nerve functioning called 

peripheral diabetic neuropathy. This means the nerves that usually carry 

pain sensation to the brain from the feet do not function as well, and it is 

possible for damage to occur to the foot without feeling it.

Treading on something, wearing tight shoes, cuts, blisters, and bruises 

can all develop into diabetes foot ulcers. Narrowed arteries can also be a 

consequence of diabetes, and reduced blood flow to the feet can also impair 

the foot’s ability to heal properly. When the foot cannot heal, a foot ulcer 

can develop. Foot ulcers are a common complication of poorly controlled 

diabetes, forming as a result of skin tissue breaking down and exposing the 

layers underneath. Chronic poor blood supply can contribute to the risk of 

requiring amputation of toes, feet, and lower legs. Approximately 2.5% of the 

population with diabetes have foot ulcers at any given time, which in England 

alone is 68,000 people. £1 in every £140 of NHS spending is on ulceration 

and amputation. Those who wait longer for specialist care tend to have more 

severe ulcers, and their ulcers are less likely to have healed at 12 weeks. Only 

20% of patients are referred to a foot protection service within the National 

Institute of Clinical Excellence (NICE)-recommended time frame of 1 day.

In 2014–2015, 1 in every 390 people with diabetes were admitted to 

the hospital for an amputation; and 1 in 33 people with diabetes were 

hospitalized due to a foot ulceration. The combined NHS cost for inpatient 

care was £322 million (86% on ulcer-related admissions).

Inpatient improvement programs delivered by video to promote foot 

checks and reduce ulcers have been successful. Ipswich Hospital NHS Trust 

saved an estimated 19 foot ulcers and 571 diabetic bed days per year, saving 

£246,000 annually. The cost benefit from improved foot self-care, referral, 

and diagnosis is substantial. NICE guidance recommends those with an 

active foot problem should be referred to a multidisciplinary team (MDT) 

or foot protection service within one working day and triaged within one 

further working day. The National Diabetes Foot Audit (NDFA) found that 

20% of 9,137 patients followed were seen in this time frame.
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 Cognitive Vision
Cognitive vision or image recognition is a machine learning technique 

designed to mimic how the human brain functions. With this technique, 

machine learning models are taught how to recognize visual components 

that make up an image. Through learning on large datasets of images and 

identifying patterns, models are able to make sense of their input and 

determine relevant tags and classifications. Image recognition is not an 

easy task. To successfully perform image recognition, neural networks are 

the technique of choice. However, even still, the computation resource 

cost is expensive in practice. For instance, a 20-pixel by 20-pixel image 

received by a neural network would receive over 400 inputs. Although 

this sounds achievable in a typical hardware setup, images of greater size, 

say 1,000-pixels by 1,000-pixels, would require a powerful computational 

resource to process the higher number of parameters and inputs. In a 

traditional neural network, each pixel would be linked to a single neuron. 

This is computationally expensive.

Proximity of pixels within images has a strong relationship with their 

similarity. Convolutional neural networks specifically make use of this 

feature. Rather than treating two nearby pixels as distinct, convolutional 

neural networks assume there is more likely a relationship between these 

pixels than two that are further apart. Through bypassing less significant 

connections between pixels, convolution solves the computational and 

time problems faced by traditional neural networks. Convolutional 

neural networks improve the computational resource required for image 

recognition through filtering relationships by proximity.

Clinical evidence suggests that diagnostic tests and risk stratification 

can predict the risk of ulceration and amputation, with early referral 

reducing amputation rates and time to heal. Solutions for diabetic foot care 

must be broader than the standard healthcare worker dependent service 

and be deliverable at a lower cost for the patient and healthcare system. 

Together with my colleague Yang Wang, we applied state-of-the- art AI 
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techniques to automatically detect signs of diabetic foot concerns, alert the 

patient, and support communication and assessment by the healthcare 

team. Image recognition technology for diabetic foot concerns would be 

revolutionary, particularly considering this machine learning experience 

could improve ulceration healing time, cost, and risk of amputations—as 

this is related to how early ulceration is detected. The model has achieved 

high accuracy in detecting subtle areas of bruising and cracked heels, 

which can soon develop into areas of foot ulceration.

A cloud-based system was developed to allow remote use of the 

application such that any device with an Internet browser was able to 

upload an image alongside a standardized protocol. The output would 

be a list of any concerns detected, the referral pathway most suited to 

the concern, and education, if relevant. The model is constantly refined 

through a machine learning feedback loop that optimizes and retrains the 

model periodically with random subsets of labelled data, including the 

data received from the web-based system.

 Project Aims
The aims of our project are to further develop and validate this machine 

learning technology, including the deep learning neural network used to 

predict the risk of foot concerns and provide precise medicine to patients. 

The convolutional neural networks used for multiple predictions can 

become more precise through its use and feedback loop from users. As the 

user base is largely healthcare professionals and carers, the learning can 

be scaled up and validated by the healthcare professional for appropriate 

triage. The project also aims to deliver a service provision to patients, 

which is only possible when the model has reached maximum, and ideally 

near-absolute, accuracy. Reducing error is a key priority for the project. 

Grading schemes and standardized protocols support the model to 

develop greater precision and recall. The ability to identify ulceration and 

other foot concerns earlier would accelerate diagnosis, treatment,  
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and save the lives of many. A cloud-based system would enable easier 

sharing of the application and its outcomes. A catchall event log was 

developed to identify all events taking place within the ecosystem. The 

platform includes behavior health mentoring and integrated tracking for 

blood glucose, blood pressure, mood, food, weight, and sleep through 

Bluetooth- enabled devices, wearables, and self-inputted data.

AI models provide boundless opportunity in predictive analytics.  

By analyzing and generalizing on thousands of images, medical images  

are being turned into science. Precision medicine is the objective of 

evidence-based medicine. There are few ways as engaging and immersive 

as digital, which enables healthcare to collect enormous amounts of data; 

analyze and provide useful feedback to inform patients; and prevent, 

predict, diagnose, and treat disease. By the very nature of imagery,  

de-identification for aggregated learning is technically simple. However, 

the requirement to be able to explain the mechanisms of deep neural 

network prediction is technically difficult. A more general understanding 

of the application alleviates most stakeholder concerns, which can be 

explained through demonstration. As a novel innovation, there has been 

a requirement to explain how models are generated, validated, and 

continually evaluated. Regulatory approval has proved more laborious 

than previous projects due to the loose definitions that exist around 

product categorization. Error minimization has been a priority, and 

regulatory approval has focused on ensuring patient safety. The risk of 

false positives was determined to be more likely: early ulceration detection 

means quicker healing and less risk of amputation. Thresholds of concerns 

were developed within the model, with any doubt referred to a human.

Outputs of the project are being documented through clinical papers 

to highlight the value of the project to patients, healthcare providers, and 

global healthcare providers. Perhaps of most significance, the outcomes 

will demonstrate how people with diabetes can achieve significant health 

improvements by preventing and detecting diabetic foot problems.
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 Challenges
There were a number of inertia points that were observed through the 

duration of the project:

• Quality of data

Any model can only be as good as the data that is 

used to create it. Data completeness and correctness 

are paramount for a robust machine learning 

algorithm. There were several significant challenges 

with the datasets collected that facilitated the 

development of robust data governance processes. 

First, lack of labelling meant that data was unlabelled 

and often unclear on receipt. Second, handwritten 

notes that supported image scans were often 

illegible. Incorrect spelling or incomplete doctor 

notes complicated the data validation process. The 

cleaning and vetting data advanced a dataset that 

was established as a source of truth for the model.

• Data governance

The requirement for national and international 

regulatory approval required appropriate, 

transparent data governance processes to be in 

place. Governance- covered areas included data 

architecture, archiving, management, metadata 

management, privacy, security, and validation. 

Standards, best practices, and procedures were 

developed for data acquisition, verification, and 

validation. A central repository held all relevant 

data and metadata, with access restricted by 

credentials to ensure appropriate user management. 
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A governance trail for all decisions was noted as per 

the requirements for regulation, which provided 

an opportunity for reflective learning as the project 

ended. Stringent data governance ensured the 

integrity of data used within the project.

• Performance vs. “explainability”

Neural networks are notorious for being difficult 

to explain, particularly as models become more 

complex. A key requirement of this project was 

transparency in algorithmic decisions. As the 

model developed, iterations of learning and 

backpropagation tailored nodes within the network 

that became unexplainable. Model performance 

and accuracy was secondary to model transparency.

• Ethical governance

Strict data ethics and information ethics governance 

procedures were developed alongside data 

governance processes to ensure ethical and moral 

use of data. The machine learning model was used 

by healthcare professionals to predict and diagnose 

risk of foot ulceration. Processes around the effect of 

false positives and true negatives in particular were 

noted, as misdiagnosis was established to be the 

greatest ethical concern. The effects of ulceration 

and healing times can be greatly reduced through 

swift diagnosis and action. As the application 

was used to support the actions of healthcare 

professionals, users were informed as to the 

limitations of the model, and it was explained how 

model accuracy was based on validation datasets.
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• Closing the loop

The developed model predicted the likelihood of 

foot ulceration and other diabetic foot concerns. 

As this was to be used in the stages of prevention 

and diagnosis, a feature that was requested was the 

ability to validate and confirm model predictions. 

To do so, the healthcare professional using the 

application would either confirm diagnoses or refer 

the patient to a specialist for diagnosis. The process 

of feeding back patient outcomes into the system 

enabled the system to learn in near real time. Data 

feedback from patients once referred to the hospital 

was difficult and cumbersome to gather.

• Stakeholder understanding

An unforeseen challenge was the lack of stakeholder 

understanding and sporadic resistance to 

technology- driven healthcare solutions. Key 

stakeholders were typically biased by previous 

experiences, negative press, or threatened by 

concerns of an age of robots taking jobs from 

humans. This was overcome with staff stakeholder 

training days; third-party experts and internal 

stakeholders explained how AI and machine 

learning could be used to optimize the tasks 

conducted by healthcare professionals, improve the 

resource burden, and mitigate concerns of a near-

future robot race. The project scope was developed 

with the input of a diverse, multifaceted stakeholder 

group to ensure all relevant parties were vested in 

the project.
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• Adoption strategy

As a project that started through R&D funding, 

there was little incorporation of the pilot project 

into the wider organizational direction. Stakeholder 

comfortability and adoption of the novel innovation 

was progressed through workshops and hands- 

on experience. Workshops focused on mitigating 

stakeholder concerns and on the ease, efficacy, and 

resource-light environment of the predictive system.

 Conclusions
Cloud-based intelligence that is sensitive and accommodating to 

differences in photography hardware and formats can be combined with 

patient clinical, demographic, behavioral, and genomic data to develop 

a precision-medicine framework for detection of diabetic foot concerns. 

The prototype was welcomed by healthcare professionals, with several 

remarking on elements that improved their own knowledge on the topic. 

Healthcare professionals felt more confident in diagnosing foot concerns 

when partnered with the digital tool. Digital assistance can confirm 

and support decisions and challenge healthcare professionals on how 

they arrive at their decisions. Applied across the spectrum of medical 

images and data collected by healthcare and research organizations, the 

technology will affordably be able to enable large-scale prognostic, risk 

stratification, and best treatment decisions.

From our experience, having more data is almost always more 

important than the algorithm itself. Overcoming the concerns of text 

digitalization and label recognition alongside medical imagery proves to 

be a challenging area within this field. Handwriting and human error have 

been the biggest problems to mitigate to reduce false recall. Conducting 

a large-scale clinical trial is the next phase of the project. A pilot project 

assessing the feasibility of the project is pending funding approval.
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 Case Study: Outcomes of a Digitally 
Delivered, Low-Carbohydrate, Type 2 
Diabetes Self-Management Program: 1-Year 
Results of a Single-Arm Longitudinal Study
LR Saslow, PhD, University of Michigan, Ann Arbor; JE Aikens, PhD, 

University of Michigan, Ann Arbor; DJ Unwin, FRCGP, Principal in General 

Practice, The Norwood Surgery, Southport, UK

[The following details the Low Carb Program digital health intervention 

from Diabetes Digital Media. The intervention is used by over 300,000 

people in 190 countries.]

 Background
Type 2 diabetes has serious health consequences including blindness, 

amputation, stroke, and dementia; and its annual global costs are 

more than $800 billion. Although typically considered a progressive, 

nonreversible disease, some researchers and clinicians now argue that type 

2 diabetes may be effectively treated with a carbohydrate-reduced diet.

Although typically considered a progressive, nonreversible disease, 

some researchers and clinicians now argue that type 2 diabetes may be 

effectively treated with a carbohydrate-reduced diet, which could improve 

type 2 diabetes management and potentially even lead to remission.[168]  

Indeed, previous research with carbohydrate-reduced diets for type 2 

diabetes do show improved outcomes (such as glycemic control, weight 

loss, and reductions in the use of hypoglycemic medications), for both 

very low-carbohydrate diets (roughly 20% or fewer of total dietary calories 

derived from carbohydrates)[169, 170, 171] or lower carbohydrate diets 

(roughly 40% or fewer of total dietary calories derived from carbohydrates).

[172, 173] Although dietary interventions have historically been in person, 
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online programs can be just as effective for some participants, as suggested 

by research that has examined diet and lifestyle interventions in adults 

with prediabetes.[174] Therefore, it is perhaps not surprising that the 

beneficial results of carbohydrate-reduced diets for people with type 

2 diabetes (glycemic control, weight loss, and reductions in the use of 

hypoglycemic medications) have been replicated using online programs.

[175, 176]

 Objectives
Our objective was to evaluate the 1-year outcomes of a digitally 

delivered Low-Carb Program (LCP), a nutritionally focused, 10-session 

educational intervention for glycemic control and weight loss for adults 

with type 2 diabetes. The program reinforces carbohydrate restriction 

using behavioral techniques including goal setting, peer support, and 

behavioral self- monitoring.

 Methods
The study used a quasi-experimental research design comprised of  

an open-label, single-arm, pre- and post-intervention using a sample  

of convenience. From adults with type 2 diabetes who had joined  

the program and had a complete baseline dataset, we randomly  

selected participants to be followed for 1 year (N = 1,000; mean age 56.1, 

SD 15.7, years; 59% [593/1,000] women; mean HbA1c 7.8, SD 2.1, %; 

mean body weight 89.6, SD 23.1, kg; taking an average of 1.2 diabetes 

medications).

The LCP is a completely automated, structured, 10-week health 

intervention for adults with type 2 diabetes. Participants are given 

access to nutrition-focused modules, with a new module available each 

week over the course of 10 weeks. The modules are designed to help 

participants gradually reduce their total carbohydrate intake to < 130 g  
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per day to meet their self-selected goals. The program encourages 

participants to make behavior changes based on “Action Points” or 

behavior-change goals at the end of each module. These goals are 

supported with resources that are available to download including 

information sheets, recipes, and suggested food substitution ideas.  

The LCP online platform also includes digital tools for submitting  

self-monitoring and device-driven data on a number of different 

variables including blood glucose levels, blood pressure, mood, sleep, 

food intake, and body weight. Weekly automated feedback is provided 

to users based on their use of the program through e-mail notifications, 

and participants are notified when the next week’s module has been 

opened. Lessons are taught through videos, written content, or podcasts 

of varying lengths. The program stresses the importance of regular 

contact with the participants’ healthcare providers for adjustments in 

medications in weeks 1, 2, and 10. After the 10 weeks of modules have 

been opened, participants continue to have access to the education 

content as well as the ability to continue to track their health (glycemic 

control, weight). The content and strategies used in the program build 

off of prior research and theory. For example, evidence suggests that goal 

setting can act as an effective behavior change strategy used to improve 

adherence to lifestyle intervention programs in obesity management 

programs. The program therefore encourages participants to select a 

goal at the beginning of the program (such as to lose weight, reduce 

medication dependency, or make healthier choices for their whole 

family). Participants are also prompted to consider how their health 

would benefit from attaining their goal. Throughout the program, 

participants are periodically prompted to consider how close they are 

to attaining their goal. The program further reinforces behavior change 

through integrated tracking, whereby program users are encouraged to 

track their health data including mood, food intake, blood glucose levels, 

weight, sleep, and HbA1c. According to the control theory of behavior 

change, monitoring goal progress—that is, evaluating one’s ongoing 
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performance relative to the standard—and responding accordingly 

is critical to goal attainment. Recent findings suggest that program 

interventions that elevate the frequency of progress monitoring are likely 

to induce behavior change.

 Results
Of the 1,000 study participants, 708 (70.8%) individuals reported outcomes 

at 12 months, 672 (67.2%) completed at least 40% of the lessons, and 528 

(52.8%) completed all lessons of the program. Of the 743 participants 

with a starting HbA1c at or above the type 2 diabetes threshold of 6.5%, 

195 (26.2%) reduced their HbA1c to below the threshold while taking 

no glucose-lowering medications or just metformin. Of the participants 

who were taking at least one hypoglycemic medication at baseline, 40.4% 

(289/714) reduced one or more of these medications. Almost half (46.4%, 

464/1,000) of all participants lost at least 5% of their body weight. Overall, 

glycemic control and weight loss improved, especially for participants who 

completed all 10 modules of the program. For example, participants with 

elevated baseline HbA1c (≥ 7.5%) who engaged with all 10 weekly modules 

reduced their HbA1c from 9.2% to 7.1% (P < .001) and lost an average of 

6.9% of their body weight (P < .001).

 Observations
• The engagement platform used by patients for this 

study was only available on the Web and not as a 

mobile app. It would be expected that a mobile app 

would improve engagement.

• The criteria for inclusion within the project was the 

requirement to be over 18 and the ability to speak 

English.
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• The percentage of individuals with an HbA1c level of  

< 6.5% increased from 26% (257/1,000) to 50% 

(503/1,000). This degree of control, when achieved 

through pharmacotherapy, is often accompanied by 

weight gain and risk for hypoglycemic events.[177] 

As the now famous Action to Control Cardiovascular 

Risk in Diabetes (ACCORD) study reported, intensive 

hypoglycemic medical therapy “increased mortality 

and did not significantly reduce major cardiovascular 

events.”[178]

• A limitation was the rate of delivering the entire 

intervention, as only 528 (52.8%) completed all 

modules. However, a high rate (70.8%) reported 

12-month outcomes. This could be due to the  

program being launched in November, with 

Christmas and seasonal activities affecting the rate 

of completion. On the other hand, given that this 

program was entirely automated and had a wide 

reach, a large number of individuals were able to 

complete the program.

 Conclusions
Especially for participants who fully engage, an online program that 

teaches a carbohydrate-reduced diet to adults with type 2 diabetes can 

be effective for glycemic control, weight loss, and reducing hypoglycemic 

medications.

Chapter 8  Case studies



321

 Case Study: Delivering A Scalable 
and Engaging Digital Therapy for Epilepsy
Charlotte Summers, Chief Operations Officer, Diabetes Digital Media, 

United Kingdom.

 Background
Epilepsy is a neurological condition of brain. Different epilepsies are  

due to many different underlying causes. The causes can be complex, 

and sometimes hard to identify. A person might start having seizures 

because they have one or more of the following: a genetic tendency, 

structural changes in the brand, or genetic conditions. Epilepsy is 

sometimes referred to as a long-term condition, as people often live 

with it for many years, or for life. Although generally epilepsy cannot 

be “cured,” for most people, seizures can be “controlled” (stopped) so 

that epilepsy has little or no impact on their lives. Treatment is often 

about managing seizures in the long term. Most people with epilepsy 

take antiepileptic drugs (AEDs) to stop their seizures from happening. 

However, there can be side effects with such medications, and there are 

other treatment options for people whose seizures are not controlled by 

AEDs, including the ketogenic diet.

 Implementing the Evidence Base
The positive effects and therapeutic mechanisms of dietary ketosis 

and that of a ketogenic diet (KD) on human physiology have been 

well documented in literature. The KD is a high-fat, low carbohydrate 

(usually less than 50 g/day), adequate protein diet (Paoli et al. 2013), 

whose metabolic effects originates back in the 1960s; however the 

therapeutic effects of KDs can be traced back to the early 1920s when it 
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was successfully used in the treatment of epilepsy (Kessler et al. 2011). 

Ever since, the potential clinical utility of KDs has been investigated by 

several studies, resulting in an accumulation of scientific evidence on 

the therapeutic role of KDs on various physiological disorders. Several 

studies have shown that the KD does reduce or prevent seizures in many 

children whose seizures could not be controlled by medications. Over half 

of children who go on the diet have at least a 50% reduction in the number 

of their seizures. Some children, usually 10–15%, even become seizure 

free. The Epilepsy Society support the KD as a treatment option for 

patients over 12 months old. Research highlights the therapeutic effects 

of the KD on patients with epilepsy as primarily reduced medication and 

reduced seizures. In a recent Cochrane systematic review of the evidence 

regarding the effects of KDs, Levy and Cooper found no randomized 

controlled trials (RCTs).

This demonstrates that epilepsy can be managed; and in some cases, 

patients can live seizure-free lives through the sustained application of 

a ketogenic way of eating. Through reducing sugar in the diet and at the 

same time improving blood glucose control, people with epilepsy can 

achieve significant health benefits such as reducing their risk of seizures 

and number of medications.

 Sensor-Driven Digital Program
The Ketogenic Program for Epilepsy (KPE) is a structured education 

behavior change program for people with epilepsy. The KPE empowers 

users to sustainably adopt a lower carbohydrate lifestyle with the 

appropriate personalized education, health-tracking facilities, support, 

health mentoring, and resources to maintain a safe and sustainable 

lifestyle. As a result, people with epilepsy could expect to improve 

glycemic control and as a result reduce the incidence of seizures,  

reduce medication dependency, and improve confidence in managing 

their condition.
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Health data is collected in real time through blood glucose monitoring, 

medication monitoring, and seizure tracking modules within the 

application. Unstructured data is particularly useful in understanding 

sentiment and the patient’s psychology. Research activity will take place 

over the course of 12 months, reporting on 3-month, 6-month, 9-month, 

and then 1-year epidemiological health outcomes and engagement data 

followed by an 18-month and 2-year follow-up to demonstrate efficacy 

and adherence to the program over the short to medium term. This will 

be the world’s largest and longest study on patients engaged with a digital 

platform epilepsy. It is possible that with the right funding this could be 

conducted as a randomized controlled diet, which would be the world’s 

first in KDs delivered for epilepsy through a digital platform.

 Research
As part of this project, we seek to learn the most efficient and effective 

methods to implement and accelerate at-scale delivery of our technology 

to the UK’s NHS population and international bill payers. The project is  

led by an award-winning and experienced team, recognized for  

innovating digital health, who are determined to revolutionize the 

health and well- being of people across the globe. The technological 

challenge is to create a scalable, engaging, and effective solution for 

global implementation. This challenge is mitigated through the project 

extending on the infrastructure of DDM’s (Diabetes Digital Media) Low 

Carb Program for type 2 diabetes, with clinically validated outcomes 

and 71% retention at 1 year. Surprisingly, out of 300,000 patients globally 

registered within the Low Carb Program for type 2 diabetes, there are 

3,112 people with epilepsy (0.5% of the UK population)—showing 

the readiness for an online, nutrition-focused intervention for this 

population.

DDM intends to conduct the world’s first RCT on patients following a 

ketogenic protocol with the Ketogenic Program pioneering in the space of 
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digital health innovation. The potential cost-saving impact to the NHS is 

significant. Patients who are empowered and have improved health and 

well-being are also more active members of their communities and have 

lower social care needs.

 Project Impact
The greatest impact will be felt by patients with epilepsy and their 

families through empowering patients to manage their epilepsy. Evidence 

demonstrates that a KD in people with epilepsy can be maintained 

by infants and adults with improvements in number of seizures and 

medication consumed. Evidence also demonstrates positive effects on 

cardiovascular disease risk. The health improvements and potential cost 

savings are sizeable. In addition to this, the project is of tremendous value 

to the UK economy and the NHS, with reduced complications, improved 

mental and emotional health, reduced hospital admissions, and reduced 

medication having a direct impact on the budget of the UK Treasury.

Positive social impacts experienced by the patient have a repercussion 

for wider communities, businesses, and the UK economy. As the result of 

improved patient and population health, organizations will benefit from 

fewer sick days and reduced absenteeism, improved mental health and 

improved perceived quality of life, as well as a reduction in the perceived 

burden of managing epilepsy. The positive impact is also received by 

the clinical healthcare community—through reducing physician and 

healthcare professional burden and enhancing the evidence base.

 Preliminary Analysis
The objective of the research arm of this project is to evaluate the 1-year 

outcomes of a digitally delivered Ketogenic Program: a nutritionally 

focused, 16-session educational intervention for epilepsy control through 

provision of a KD. The program assists in patients placing themselves in 
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ketosis using behavioral techniques including goal setting, peer support, 

and behavioral self-monitoring. Interesting correlations between elevated 

blood glucose and mood enabled predictive algorithms to be developed 

to identify symptoms of impending seizures, alerting patients through 

notifications to take action. Especially for participants who fully engage, 

an online program that teaches a carbohydrate-reduced diet to adults with 

epilepsy can be effective for glycemic control, weight loss, and reducing 

medication and the number of patient seizures. An RCT is required to 

understand the clinical impact of such a digital therapeutic.

 Case Study: Improving Learning Outcomes 
For Junior Doctors Through the Novel Use 
of Augmented and Virtual Reality
Paul Duval, University of Liverpool; Vidhi Taylor-Jones, University of 

Liverpool

 Background
Junior doctors arrive at a university eager to help mankind, yet often they are 

unaware of how to deal with high-pressure, critical scenarios. Dealing with 

medical concerns appropriately—whether emergencies or not—requires 

years of experience and learning. Over time, exposure in doctor surgeries, 

hospitals, and clinics develops the self-assurance, readiness, and experience 

required for junior doctors to realize their vocation. High-pressure 

scenarios, such as a patient having a cardiac arrest, require pinpoint 

precision accuracy in decision-making and actions. For some time after first 

arrival to a university, junior doctors are not ready to make such decisions. 

This is where augmented and virtual reality provides an opportunity to 

engage students in learning that readies them for life as a doctor. What’s 
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more, with 1,500 students in any one year, group trips to hospitals are 

expensive and logistically difficult to manage.

The project was recognized for its pioneering nature in 2016, when it 

won an Association for the Study of Medical Education (ASME) Education 

Innovation Award.

 Aims
The aims of the project were manyfold:

• Increase the exposure to simulation and training 

environments for junior doctors without the use of 

simulation centers.

• Give inexperienced doctors the experience they require 

in a noncritical environment.

• Demonstrate effective and ineffective clinical practice.

• Encourage students to consider their own practices and 

thought processes.

• Immerse students in a clinical learning environment 

and identify whether the use of virtual reality enabled 

them to become familiar with the healthcare setting, 

patient unpredictability, and provided the confidence 

to cope with high-pressure scenarios.

 Project Description
It was agreed that the project have as wide a reach as possible. This 

eliminated virtual reality hardware such as the HoloLens or Oculus and 

focused the delivery onto mobile devices. The Samsung Gear and Google 

Pixel were able to handle the delivery of the content with the use of a 

headset to extend the view into virtual reality. This was logical considering 
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almost every student owns a phone, whereas the use of HoloLens and 

Oculus is still relatively niche.

Simulations of a variety of clinical experiences were filmed with 

360-degree videography using both doctors and patients as actors. These 

simulations were short 5- to 10-minute videos that featured decision 

moments where students needed to make an active choice—including 

a patient suffering from cardiac arrest and a patient with schizophrenia 

becoming hysterical. These videos were integrated into a virtual reality 

application that enabled students to explore a clinical setting in virtual 

reality, engage in the environment, and encouraged them to make a variety 

of decisions during the process.

 Conclusions
• Virtual reality simulation provided a prime and safe 

clinical environment for junior doctors to explore their 

practice.

• In particular, the technology allowed students to focus 

on mistakes—unifying approaches to medicine across 

the cohort.

• The technology enabled students to learn anywhere, 

anytime: at home, school, or library.

• Virtual reality simulations were accessible by all 

medical students with the appropriate hardware.

• Students were able to become more active in decision- 

making in lectures.

• The virtual reality experience encouraged discussion 

and learning.
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• It was cheaper and logistically easier to manage than 

student trips to hospital wards.

• The use of this innovative technology prepares junior 

doctors for the demands of the vocation.

• Research and exploration into the appropriate 

pedagogies to support virtual reality learning is 

required as the tools become more freely available.

 Case Study: Big Data, Big Impact, 
Big Ethics: Diagnosing Disease Risk 
from Patient Data
Dominic Otero Head of Engineering, Diabetes.co.uk, United Kingdom

 Background
The variety and velocity of patient data has exponentially increased 

over recent decades. This data has not progressed the robustness of 

decision-making. This leads to questions as to why decision-making is 

not becoming more data-driven and what can be done to validate and 

expedite its adoption.

Diabetes.co.uk is the world’s largest diabetes community, based at the 

University of Warwick, and the platform welcomes over 45 million visitors a 

year. As the world’s diabetes community, the organization provides a range 

of services that focus on the patient-data ecosystem to empower patients to 

manage and control their health. By collecting patient data, or real-world 

evidence, over time, the ecosystem is created such that it offers insights, 

education, and feedback on particular aspects of the patient’s health.
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 Platform Services
The platform collects a wealth of data. From the moment of platform 

access, behavioral and engagement metrics are collected, with patients 

progressing onto registering for the platform, opting in to part with over 

120 variables that cover their diabetes and overall health status. Once 

inside the platform, a variety of data types are collected—unstructured 

data in the form of conversations, interactions, engagements, and 

behavior; and structured data in the form of self-reported, device-driven, 

wearable, IoT, and clinical health record data. The platform provides a 

number of services to patients and bill payers.

 Medication Adherence, Efficacy and Burden
Medication adherence, adverse effects, and wastage are concerns that 

pharmacology seeks to overcome. Patients with diabetes are typically on 

at least one medication on entry to the platform. Within the platform, 

patients evaluate their medications at regular intervals, sharing their 

own opinions on the use of medicine in the real-world, and report more 

structured data such as side effects, adherence, efficacy, and burden of 

using medications. This data is mapped geographically, by condition, 

medication, and other markers and fed back in a de-identified, aggregate 

manner to pharmacological and academic partners for research 

purposes. Data is used by partners to identify new drugs and understand 

interactions, usage, adherence, and real-world adverse effect prevalence. 

The same data is also used to improve patient safety. For instance, the 

platform alerts members on particular medications or using particular 

devices should there be an issue or recall.
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 Community Forum
The Diabetes.co.uk community forum is the world’s largest support 

community for people with diabetes and provides an unrivalled insight 

into the global diabetes population. The platform welcomes people with 

all types of diabetes, carers, and healthcare professionals. The concept 

is simple: real people with diabetes talking about their own experiences 

and speaking to others who are in a similar position. Patient engagement 

is high; there is over 2 million years of cumulative experience among 

members, who spend over 17 minutes each visit on the platform. As 

one on the world’s most novel digital communities, data and respective 

insights from the online forum and dissemination of academic findings 

are constantly shared with our patient-support network, medical advisory 

board, partners, and other interested networks.

A first phase study by Royal Holloway, University of London, in 

2017 investigated the role of online health communities in patient self- 

management, assessing the following:

• How patients appraise knowledge from online health 

communities in managing diabetes; and

• How a patient’s healthcare professionals perceive and 

can potentially use such knowledge to innovate their 

clinical practice.

The study concluded the following:

 1. The Diabetes.co.uk forum is a catalyst of innovation.

 2. The Diabetes.co.uk forum empowers patients, meaning

 i. A good relationship with their healthcare professional

 ii. High confidence or self-efficacy in managing 

their condition

 iii. Feeling less emotionally burdened
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This was supported with data from 13,000 patients who highlighted the 

patient benefit through platform usage:

• 53% improved blood glucose control

• 58% improved quality of life

• 59% improved confidence in managing diabetes

• 65% improved dietary choices

• 76% improved understanding of diabetes

 AI prioritization of patient interactions
To meet regulatory requirements, any health platform must report patient 

health or safety concerns immediately on discovery. This would prove 

cumbersome for a developed health platform such as Diabetes.co.uk if 

completely human-led for several reasons:

• Monitoring of medical discussion groups and 

interactions requires human-intensive staffing to spot 

concerns for regulation purposes.

• Lots of time is wasted if humans were to do all the 

checking.

It was decided that to meet our obligations, the use of AI bots 

would speed up the process, enabling humans to spend time with the 

concerns that matter. This was realized through the development of a 

neural network-based classifier to determine sentiment and concern 

based on contents, user profiles, and frequency of other key metrics. The 

classification system went through several hundred rounds of validation, 

taking a subset of the huge data lake that was available from the millions 

of posts. The classifier was able to spot 99.8% of all concerns, with humans 
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required to intervene in 0.2% of cases. There were a number of benefits to 

the AI prioritization:

• It saved a considerable amount of human time.

• Human time was spent on the problems that were of 

most concern.

• The flagging of discussions occurred in near real time 

rather than the 15–20 minutes it would take a human to 

do so.

This information also assisted the customer support teams to 

efficiently deal with user queries by knowing exactly what a conversation 

was about, typical responses to such a query, and what to say to a user 

to ensure a favorable outcome for all parties involved. Additionally, 

by gauging the sentiment of users and storing it, user data can be 

implemented to build additional systems in the future.

 Real-World Evidence
Through the analysis of patient data, we can determine a discrepancy 

between official and real-world health statistics. For instance, 14% of 

people with diabetes in the United Kingdom are expected to have a 

mental or emotional health concern, whereby the platform sees 44% of 

users with this health condition. This highlights that further exploration 

and understanding of the patient population is severely needed to ensure 

critical aspects of patient care are not neglected. Interestingly, partners 

have become more interested in real-world evidence as the years have 

progressed, partially to do with concerns over research funding and 

conflicts of interest.
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 Ethical Implications of Predictive Analytics
Predictive analytics enables intelligent classifiers to predict the risk 

of disease. The collection of a varied patient dataset—including 

conversations, health markers, demographics, and behavior—enables 

the development of a sophisticated model that can be used to refine 

predictions further. One of the unintended consequences of the project 

was discovered when deploying an AI model that predicted the risk of a 

patient having pancreatic cancer. Pancreatic cancer typically effects 1 in 

10,000 people and is frequently misdiagnosed. Often, patients receive a 

diagnosis when it’s too late. A pancreatic cancer AI model was developed 

using a clinical dataset of health metrics, engagement, and behavior data 

and first predicted the likelihood of poor patient metabolic health. Should 

patients meet the threshold for poor metabolic health, the model evaluates 

the risk of the patient having pancreatic cancer.

Communicating this information to users was a first-time problem 

for the organization. All relevant stakeholders, including all members 

of the Medical Advisory Panel, were prompted for their input on this 

topic. Predictive analytics had previously been used to inform patients 

of possible hypertension or increased risk of conditions based on 

lifestyle. However, informing patients of their risk of pancreatic cancer 

was considered to be unethical, particularly as we did not want to create 

additional mental health concerns or anxieties.

How should a user be told of a possible life-changing concern? The 

key action for this communication is to nudge the patient to see their 

doctor or physician as soon as possible. The factor for success in this case 

was determined to be user friction. The less friction there is between the 

user and communicating party, the more successful the engagement. 

Stakeholders from behavioral economics were vital in testing and 

confirming an engaging communication to inform the user that their data 

fell outside expected norms without raising fear. To do this, the prediction 

was framed against patient and population demographic and medical 
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data. Rather than being told they were the only patient to see anomalous 

data, patients were reassured that others have also seen similar patterns 

and been successful in improving their health.

 Integration of the IoT
Sensors in wearables such as accelerometers, altimeters, and heart rate 

and skin temperature monitors provide a tremendous amount of useful 

information. For instance, motion, sweat molecules, and conversations 

are all useful and relevant data points. Such metrics can be used to take a 

snapshot of metabolic health, cardiovascular health, and mental health. 

For this to be conducted at scale, there must be little to no friction between 

the patient and providing parties. The less friction there is between the 

user and whom they choose to share data with, the more successful the 

product. Wearables are becoming increasingly used in incentivized wellness 

propositions. Validating patient behaviors and general physiology facilitates 

the personalization of premiums and outcomes-based reimbursements.

Patients have the option to connect their devices and applications 

to the Diabetes.co.uk architecture. What is interesting is that younger 

users typically adhere to wearable usage and find it easy, while elderly 

users typically did not. This is of relevance to insurance and incentivized 

wellness propositions, as most claims come from older policyholders.

 Conclusions
The realization of precision medicine is not without technical and ethical 

challenges. IoT and conversational and wearable data are just examples of 

a variety of data that can be collected and used to empower patients in real 

time, facilitating improvements in health and well-being. However, with 

data and the application of AI, come ethical concerns, particularly in the 

prediction of future disease risk. The lack of processes and governance on 

such topics is urgently required as the abilities of AI mature.
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 Technical Glossary

• Accuracy

A metric used in machine learning that is used to 

evaluate the performance of a machine learning 

model.

• Backpropogation

Used by neural networks, the updating of biases and 

weights based on error. This occurs when the estimated 

output exceeds a defined error threshold. The error at 

output is propagated back into the network to update 

values of neurons.

• Bagging

A machine learning technique of creating multiple 

models on subsets of the same data and combining 

them to improve overall prediction.

• Bootstrapping

The technique of splitting data into multiple subsets 

with replacement. Each sample is known as a bootstrap 

sample.

• Big data

A large corpus of data—which is typically both 

structured and unstructured.
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• Columnar

The storing of data in columns rather than rows (as per 

many traditional database structures). Columnar data 

storage improves speed due to reduced disk load and 

improved data transfer.

• Continuous variable

A variable that can take any infinite value between its 

minimum and maximum.

• Cost function

A cost function is a performance metric that is used to 

measure the error of a machine learning model.

• Dataframe

A dataframe is a labelled data structure that can 

contain columns of different types of data.

• Dataset

A dataset is a collection of examples.

• Data transformation

The process of converting data from one form or type to 

another

• Discrete variable

A variable that can take a finite number of values.

• Example

A collection of features.
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• Exploratory Data Analysis (EDA)

EDA is a data science technique that seeks to 

understand data insights through statistical analysis 

and graphical visualization.

• False negative

A model output that is incorrectly predicted as false.

• False positive

A model output that is incorrectly predicted as true.

• Falcon

A management framework for Apache, used for 

governance of data in Hadoop clusters.

• Feature

A feature is a data attribute and its value. As an 

example, skin color is brown is a feature where skin 

color is the attribute and brown is the value.

• Feature selection

The process of choosing the features required to 

explain the outputs of a statistical model while 

excluding irrelevant features.

• Flume

A distributed service that collects, aggregates, 

and transfers large, real-time data into the HDFS 

(Hadoop Distributed File System).

• F-score

An evaluation technique that combines precision and 

recall into a measure of classification effectiveness.
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• Goodness of fit

This term refers to how well a model fits an observation 

set and summarizes any differences between observed 

and expected values.

• Hadoop

Hadoop is a commonly used, open source framework 

developed by Apache that caters for distributed 

processing of big datasets.

• Hadoop Common

Common libraries, modules, and extensions that 

support Hadoop modules.

• Hadoop MapReduce

Hadoop MapReduce is a design framework for software 

development that facilitates the processing of large 

datasets in parallel.

• HBase

Refers to a Hadoop database that enables the storage 

and management of sparse data.

• Hive

Hive is an open source library that enables Hadoop 

tasks to be programmed using SQL. This provides a 

relational database storage structure.

• JSON

JSON, or JavaScript Object Notation, is a lightweight 

data file type that facilitates quicker retrieval of data, 

particularly in web-focused applications, as it is easier 

to parse and generate.
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• R

R is a software and programming language for 

statistical computing and graphics. Project R has been 

designed as a data mining tool, while R programming 

language is a high-level statistical language that is used 

for analysis.

• Impala

An open source, massively parallel processing database 

for Apache that enables data querying from HDFS or 

HBase.

• Matlab

Matlab is the language many university students begin 

with. It is useful for fast prototyping, as it contains a 

large machine learning repository.

• Matrix

A matrix is an array used for representation of data.

• MongoDB

MongoDB is a NoSQL database, which are used to store 

unstructured data with no particular schema.

• Model selection

The process of choosing a statistical model for machine 

learning from known models.

• NewSQL

NewSQL databases maintain the integrity of typical 

relational SQL databases while providing the scalable 

performance of NoSQL structures.
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• NoSQL

A modern approach to databases that is useful for 

managing data that changes frequently, or data that is 

unstructured or semi-structured in nature. Rows can 

all have their own set of unique column values. NoSQL 

has been driven by the requirements to provide better 

performance in storing big data. The architecture has 

better write performance, takes less storage space with 

compression, and reduces operational overhead.

• Overfitting

Overfitting occurs when a machine learning model 

performs well on a training dataset but does not 

perform as well on a validation set. The model 

essentially learns the training data.

• Parameters

Attribute values that control the output and behavior of 

a machine learning system.

• P value

On the basis the null hypothesis is true, the P value 

refers to the probability of receiving a value equal to or 

greater than the observed value.

• Ranger

A data management and monitoring framework to 

ensure data security.

• Regression

This is a supervised learning technique in which the 

output is a real value.
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• Sqoop

An extremely useful, open source to facilitate the 

transfer of data between Hadoop and traditional 

relational database systems.

• Spark

Spark is a simple programming model that can be used 

with Java, Scala, Python, and R that enables large-scale 

data processing applications to be written quickly.

• SQL

SQL (structured query language) is a language used 

for managing data held in a traditional database 

management system.

• Tensor

A tensor is an object similar to a vector that is 

represented as an array that can hold data in N 

dimensions. A tensor is a generalization of a matrix in 

N-dimensional space.

• TensorFlow

An Alphabet-backed, open source library of data 

computations optimized for machine learning that 

enables multilayered neural networks and quick 

training.

• True negative

A model output that is correctly predicted as false.

• True positive

A model output that is correctly predicted as true.
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• Underfitting

Underfitting occurs when a machine learning model is 

not able to capture the signal of the data and will have 

poor performance on both training and validation data.

• XML

An acronym for eXtensible Markup Language, XML 

is another form of flat data file designed to make the 

importing, exporting, generation, and movement of 

data easier.
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